The fast multipole method was used to solve the traction boundary integral equation for 2-D crack analysis. The use of both multipole and local expansions reduces both the computational complexity and the memory req...The fast multipole method was used to solve the traction boundary integral equation for 2-D crack analysis. The use of both multipole and local expansions reduces both the computational complexity and the memory requirement to O(N). The multipole expansion uses a complex Taylor series expansion to reduce the number of multipole moments. The generalized minimum residual method solver (GMRES) was selected as the iterative solver. An improved preconditioner for GMRES was developed which uses less CPU time and less memory. A new initial candidate vector for the iterative solver was developed to further improve the efficiency. The numerical examples apply the method to the analysis of cracks in infinite 2-D space with the largest model having 900 000 degrees of freedom.展开更多
文摘The fast multipole method was used to solve the traction boundary integral equation for 2-D crack analysis. The use of both multipole and local expansions reduces both the computational complexity and the memory requirement to O(N). The multipole expansion uses a complex Taylor series expansion to reduce the number of multipole moments. The generalized minimum residual method solver (GMRES) was selected as the iterative solver. An improved preconditioner for GMRES was developed which uses less CPU time and less memory. A new initial candidate vector for the iterative solver was developed to further improve the efficiency. The numerical examples apply the method to the analysis of cracks in infinite 2-D space with the largest model having 900 000 degrees of freedom.