为了提升高效视频编码(High Efficiency Video Coding,HEVC)帧内编码的实时性能,本文提出的方法利用了引入偶数边长与步长的卷积核以及自注意力机制的轻量级卷积网络来预测编码树单元(Coding Tree Unit,CTU)的帧内划分结构,从而减少了...为了提升高效视频编码(High Efficiency Video Coding,HEVC)帧内编码的实时性能,本文提出的方法利用了引入偶数边长与步长的卷积核以及自注意力机制的轻量级卷积网络来预测编码树单元(Coding Tree Unit,CTU)的帧内划分结构,从而减少了编码器对CTU进行四叉树递归遍历划分的编码时间。原始编码策略中粗模式决策通过基于残差经哈德曼变换的预测残差绝对值总和(Sum of Absolute Transformed Difference,SATD)的损失值来估计率失真优化过程中的率失真损失值来进行加速,但仍会耗费一定的编码时间。提出一种方法通过采样搜索的方式减少粗模式决策过程中计算的模式数,从35种模式降低到了18种模式,降低了粗模式决策过程中计算估计损失值的时间。由粗模式决策过程得到的较优的多个候选帧内模式来进行率失真优化,为了缩减粗模式决策需要计算的候选模式数,在候选模式列表中根据前后帧内预测角度模式的估计损失值的差距来筛选掉部分可能性较低的候选模式实现早停止决策,从而减少需要进行率失真优化的候选模式数量,进而减少率失真优化过程的计算时间。本文提出的算法在测试序列上平均实现78.15%的编码时间缩减,BD-PSNR为-0.168 d B,BD-RATE为3.49%。展开更多
为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内...为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内预测所需的预测循环次数,以及打破各块之间的数据依赖关系等措施,克服了原始方案不适合硬件流水并行处理的限制,提高了编码的效率和稳定性,从而既保障了算法的视频质量,又使新的硬件实现方案更符合实际应用需求。实验结果表明,该算法优化方案能够有效改善实际面向低延时浅压缩场景下的编码效果。展开更多
针对新一代高效视频编码标准(high efficient video coding,HEVC)逐一划分、逐层对预测模式进行RDO过程计算复杂度高的问题,提出基于结构张量和活动值的HEVC-SCC帧内快速算法。首先利用屏幕内容图像中均匀和小的全局运动区域常用大尺寸...针对新一代高效视频编码标准(high efficient video coding,HEVC)逐一划分、逐层对预测模式进行RDO过程计算复杂度高的问题,提出基于结构张量和活动值的HEVC-SCC帧内快速算法。首先利用屏幕内容图像中均匀和小的全局运动区域常用大尺寸单元CU编码,复杂或大的全局运动区域常用小尺寸CU编码的特点,通过提取能够表示CU均匀性的结构张量,研究结构张量与CTU深度划分的联系,在CTU进行遍历不同深度下的编码模式前先对当前深度CU计算结构张量值,通过结构张量值判断是否跳过当前深度下的遍历率失真优化(RDO)的过程。其次利用屏幕内容和自然内容图像纹理特性不同,屏幕内容常含有水平或垂直的边,提出了基于图像活动值的屏幕内容帧内编码模式决策。通过计算图像的编码单元(coding unit,CU)的水平活动值、垂直活动值,对CU进行判别以跳过遍历所有预测模式的过程。所提的算法经过实验测试,在全帧内(all intra)配置下,与SCM-8.8算法相比能减少26.65%的编码时间,而BDBR仅增加1.95%。展开更多
文摘为了提升高效视频编码(High Efficiency Video Coding,HEVC)帧内编码的实时性能,本文提出的方法利用了引入偶数边长与步长的卷积核以及自注意力机制的轻量级卷积网络来预测编码树单元(Coding Tree Unit,CTU)的帧内划分结构,从而减少了编码器对CTU进行四叉树递归遍历划分的编码时间。原始编码策略中粗模式决策通过基于残差经哈德曼变换的预测残差绝对值总和(Sum of Absolute Transformed Difference,SATD)的损失值来估计率失真优化过程中的率失真损失值来进行加速,但仍会耗费一定的编码时间。提出一种方法通过采样搜索的方式减少粗模式决策过程中计算的模式数,从35种模式降低到了18种模式,降低了粗模式决策过程中计算估计损失值的时间。由粗模式决策过程得到的较优的多个候选帧内模式来进行率失真优化,为了缩减粗模式决策需要计算的候选模式数,在候选模式列表中根据前后帧内预测角度模式的估计损失值的差距来筛选掉部分可能性较低的候选模式实现早停止决策,从而减少需要进行率失真优化的候选模式数量,进而减少率失真优化过程的计算时间。本文提出的算法在测试序列上平均实现78.15%的编码时间缩减,BD-PSNR为-0.168 d B,BD-RATE为3.49%。
文摘为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内预测所需的预测循环次数,以及打破各块之间的数据依赖关系等措施,克服了原始方案不适合硬件流水并行处理的限制,提高了编码的效率和稳定性,从而既保障了算法的视频质量,又使新的硬件实现方案更符合实际应用需求。实验结果表明,该算法优化方案能够有效改善实际面向低延时浅压缩场景下的编码效果。