针对传统局部不变特征的景象匹配算法冗余点多、实时性差、抗几何变换不突出的情况,提出基于CenSurE-star的无人机(UAV)景象匹配算法。首先采用Cen Sur E特征星型滤波器(CenSurE-star)提取基准图和实时图中的特征点,并生成FREAK二进制...针对传统局部不变特征的景象匹配算法冗余点多、实时性差、抗几何变换不突出的情况,提出基于CenSurE-star的无人机(UAV)景象匹配算法。首先采用Cen Sur E特征星型滤波器(CenSurE-star)提取基准图和实时图中的特征点,并生成FREAK二进制描述符;然后将汉明距离作为特征点的相似性判定度量,采用K近邻距离比值的方法提取匹配点对;最后利用基于RANSAC的定位模型得到空间几何变换关系,实现图像匹配并获取定位点经纬坐标。算法性能评价实验表明,本文算法不仅相对于SIFT、SURF、ORB算法,对各种变换具有更好的鲁棒性,而且相对于改进的SIFT、SURF算法处理时间有更大程度的缩短,算法定位误差在0.8个像素内,尺度误差在0.02倍内,旋转角度误差在0.04°内。基于算法进行外场飞行实验,实验证明算法定位精度较高,可以适应地貌信息较少的环境,并能满足无人机视觉辅助导航的需求。展开更多
目的无人机摄像资料的分辨率直接影响目标识别与信息获取,所以摄像分辨率的提高具有重大意义。为了改善无人机侦察视频质量,针对目前无人机摄像、照相数据的特点,提出一种无人机侦察视频超分辨率重建方法。方法首先提出基于AGAST-Differ...目的无人机摄像资料的分辨率直接影响目标识别与信息获取,所以摄像分辨率的提高具有重大意义。为了改善无人机侦察视频质量,针对目前无人机摄像、照相数据的特点,提出一种无人机侦察视频超分辨率重建方法。方法首先提出基于AGAST-Difference与Fast Retina Keypoint(FREAK)的特征匹配算法对视频目标帧与相邻帧之间配准,然后提出匹配区域搜索方法找到目标帧与航片的对应关系,利用航片对视频帧进行高频补偿,最后采用凸集投影方法对补偿后视频帧进行迭代优化。结果基于AGAST-Difference与FREAK的特征匹配算法在尺度、旋转、视点等变化及运行速度上存在很大优势,匹配区域搜索方法使无人机视频的高频补偿连续性更好,凸集投影迭代优化提高了重建的边缘保持能力,与一种简单有效的视频序列超分辨率复原算法相比,本文算法重建质量提高约4 d B,运行速度提高约5倍。结论提出了一种针对无人机的视频超分辨率重建方法,分析了无人机视频超分辨率问题的核心所在,并且提出基于AGAST-Difference与FREAK的特征匹配算法与匹配区域搜索方法来解决图像配准与高频补偿问题。实验结果表明,本文算法强化了重建图像的一致性与保真度,特别是对图像边缘细节部分等效果极为明显,且处理速度更快。展开更多
文摘针对传统局部不变特征的景象匹配算法冗余点多、实时性差、抗几何变换不突出的情况,提出基于CenSurE-star的无人机(UAV)景象匹配算法。首先采用Cen Sur E特征星型滤波器(CenSurE-star)提取基准图和实时图中的特征点,并生成FREAK二进制描述符;然后将汉明距离作为特征点的相似性判定度量,采用K近邻距离比值的方法提取匹配点对;最后利用基于RANSAC的定位模型得到空间几何变换关系,实现图像匹配并获取定位点经纬坐标。算法性能评价实验表明,本文算法不仅相对于SIFT、SURF、ORB算法,对各种变换具有更好的鲁棒性,而且相对于改进的SIFT、SURF算法处理时间有更大程度的缩短,算法定位误差在0.8个像素内,尺度误差在0.02倍内,旋转角度误差在0.04°内。基于算法进行外场飞行实验,实验证明算法定位精度较高,可以适应地貌信息较少的环境,并能满足无人机视觉辅助导航的需求。
基金supported by Tianjin Sci-tech Planning Projects (14RCGFGX00846)Natural Science Foundation of Hebei Province (F2015202239)+1 种基金Tianjin Sci-tech Planning Projects (15ZCZDNC00130)Science and Technology Research Project of Hebei Province (Z2015044)
文摘目的无人机摄像资料的分辨率直接影响目标识别与信息获取,所以摄像分辨率的提高具有重大意义。为了改善无人机侦察视频质量,针对目前无人机摄像、照相数据的特点,提出一种无人机侦察视频超分辨率重建方法。方法首先提出基于AGAST-Difference与Fast Retina Keypoint(FREAK)的特征匹配算法对视频目标帧与相邻帧之间配准,然后提出匹配区域搜索方法找到目标帧与航片的对应关系,利用航片对视频帧进行高频补偿,最后采用凸集投影方法对补偿后视频帧进行迭代优化。结果基于AGAST-Difference与FREAK的特征匹配算法在尺度、旋转、视点等变化及运行速度上存在很大优势,匹配区域搜索方法使无人机视频的高频补偿连续性更好,凸集投影迭代优化提高了重建的边缘保持能力,与一种简单有效的视频序列超分辨率复原算法相比,本文算法重建质量提高约4 d B,运行速度提高约5倍。结论提出了一种针对无人机的视频超分辨率重建方法,分析了无人机视频超分辨率问题的核心所在,并且提出基于AGAST-Difference与FREAK的特征匹配算法与匹配区域搜索方法来解决图像配准与高频补偿问题。实验结果表明,本文算法强化了重建图像的一致性与保真度,特别是对图像边缘细节部分等效果极为明显,且处理速度更快。