To improve the performance of Saitou and Nei's algorithm (SN) and Studier and Keppler's improved algorithm (SK) for constructing neighbor-joining phylogenetic trees and reduce the time complexity of the computat...To improve the performance of Saitou and Nei's algorithm (SN) and Studier and Keppler's improved algorithm (SK) for constructing neighbor-joining phylogenetic trees and reduce the time complexity of the computation, a fast algorithm is proposed. The proposed algorithm includes three techniques. First, a linear array A[N] is introduced to store the sum of every row of the distance matrix (the same as SK), which can eliminate many repeated computations. Secondly, the value of A [i] is computed only once at the beginning of the algorithm, and is updated by three elements in the iteration. Thirdly, a very compact formula for the sum of all the branch lengths of operational taxonomic units (OTUs) i and j is designed, and the correctness of the formula is proved. The experimental results show that the proposed algorithm is from tens to hundreds times faster than SN and roughly two times faster than SK when N increases, constructing a tree with 2 000 OTUs in 3 min on a current desktop computer. To earn the time with the cost of the space and reduce the computations in the innermost loop are the basic solutions for algorithms with many loops.展开更多
A fast algorithm is proposed to predict penetration trajectory in simulation of normal and oblique penetration of a rigid steel projectile into a limestone target. The algorithm is designed based on the idea of isolat...A fast algorithm is proposed to predict penetration trajectory in simulation of normal and oblique penetration of a rigid steel projectile into a limestone target. The algorithm is designed based on the idea of isolation between the projectile and the target. Corresponding factors of influence are considered, including analytical load model, cratering effect, free surface effect, and separation-reattachment phenomenon. Besides, a method of cavity ring is used to study the process of cavity expansion. Further, description of the projectile's three-dimensional gesture is coded for fast calculation, named PENE3D. A presented. As a result, the algorithm is series of cases with selected normal and oblique penetrations are simulated by the algorithm. The predictions agree with the results of tests, showing that the proposed algorithm is fast and effective in simulation of the penetration process and prediction of the penetration trajectory.展开更多
An iterative algorithm to calculate mutual correlation using hierarchical key points and the search space mark principle is proposed. An effective algorithm is designed to improve the matching speed. By hi-erarchical ...An iterative algorithm to calculate mutual correlation using hierarchical key points and the search space mark principle is proposed. An effective algorithm is designed to improve the matching speed. By hi-erarchical key point algorithm and mutual correlation coefficients of the matching images, the important points can be iteratively calculated in the images hierarchically, and the correlation coefficient can be ob-tained with satisfactory precision. Massive spots in the parameter space which are impossible to match can be removed by the search space mark principle. Two approximate continuities in the correlation image matching process, the image gray level distribution continuity and the correlation coefficient value in the parameter space continuity, are considered in the method. The experiments show that the new algorithm can greatly enhance matching speed and achieve accurate matching results.展开更多
Images captured outdoor usually degenerate because of the bad weather conditions,among which fog,one of the widespread phenomena,affects the video quality greatly.The physical features of fog make the video blurred an...Images captured outdoor usually degenerate because of the bad weather conditions,among which fog,one of the widespread phenomena,affects the video quality greatly.The physical features of fog make the video blurred and the visible distance shortened,seriously impairing the reliability of the video system.In order to satisfy the requirement of image processing in real-time,the normal distribution curve fitting technology is used to fit the histogram of the sky part and the region growing method is used to segment the region of sky.As for the non-sky part,a method of self-adaptive interpolation to equalize the histogram is adopted to enhance the contrast of the images.Experiment results show that the method works well and will not cause block effect.展开更多
Making use of this expression to calculate the phase grating in high resolution image simulation can greatly reduce the calculating time. In this paper, the derivation of the expression is introduced, and then the com...Making use of this expression to calculate the phase grating in high resolution image simulation can greatly reduce the calculating time. In this paper, the derivation of the expression is introduced, and then the computer routine is explained in details. Finally the potential projection map of Mg44Rh7 along [001] direction is shown as an illustration. All operations are carried out in real space, so we call the calculation method as the real space method.展开更多
Multivariate Hermite interpolation is widely applied in many fields, such as finite element construction, inverse engineering, CAD etc.. For arbitrarily given Hermite interpolation conditions, the typical method is to...Multivariate Hermite interpolation is widely applied in many fields, such as finite element construction, inverse engineering, CAD etc.. For arbitrarily given Hermite interpolation conditions, the typical method is to compute the vanishing ideal I (the set of polynomials satisfying all the homogeneous interpolation conditions are zero) and then use a complete residue system modulo I as the interpolation basis. Thus the interpolation problem can be converted into solving a linear equation system. A generic algorithm was presented in [18], which is a generalization of BM algorithm [22] and the complexity is O(τ^3) where r represents the number of the interpolation conditions. In this paper we derive a method to obtain the residue system directly from the relative position of the points and the corresponding derivative conditions (presented by lower sets) and then use fast GEPP to solve the linear system with O((τ + 3)τ^2) operations, where τ is the displacement-rank of the coefficient matrix. In the best case τ = 1 and in the worst case τ = [τ/n], where n is the number of variables.展开更多
In this paper, a new algorithm for the fast computation of a 2-D discrete cosine transform (DCT) is presented. It is shown that the N×N DCT, where N = 2m, can be computed using only N 1-D DCT’s and additions, in...In this paper, a new algorithm for the fast computation of a 2-D discrete cosine transform (DCT) is presented. It is shown that the N×N DCT, where N = 2m, can be computed using only N 1-D DCT’s and additions, instead of using 2N 1-D DCT’s as in the conventional row-column approach. Hence the total number of multiplications for the proposed algorithm is only half of that required for the row-column approach, and is also less than that of most of other fast algorithms, while the number of additions is almost comparable to that of others.展开更多
DHT of length p<sup>l</sup>q(p is odd and q is arbitrary) is turned into p<sup>l</sup> DHTs of length qand some additional operations, while the additional operations only involves the comput...DHT of length p<sup>l</sup>q(p is odd and q is arbitrary) is turned into p<sup>l</sup> DHTs of length qand some additional operations, while the additional operations only involves the computation ofcos-DFT and sin-DFT with length p. If the length of a DHT is p<sub>1</sub><sup>l<sub>1</sub></sup>…P<sub>N</sub><sup>l<sub>N</sub></sup>2<sup>l</sup>(P<sub>1</sub>…,P<sub>N</sub> are oddprimes), a fast algorithm is obtained by the similar recursive technique. Therefore, the algorithmcan compute DHT of arbitrary length. The paper also Proves that operations for computingDHT of length N by the algorithm are no more than O(Nlog<sub>2</sub>N), when the length is N=p<sup>l</sup>,operations of the algorithm are fewer than that of other known algorithms.展开更多
An algorithm is provided for the fast and accurate computation of the solution of the Bitsadze equation in the complex plane in the interior of the unit disk. The algorithm is based on the representation of the soluti...An algorithm is provided for the fast and accurate computation of the solution of the Bitsadze equation in the complex plane in the interior of the unit disk. The algorithm is based on the representation of the solution in terms of a double integral as it shown by Begehr [1,2], some recursive relations in Fourier space, and Fast Fourier Transforms. The numerical evaluation of integrals at points on a polar coordinate grid by straightforward summation for the double integral would require floating point operation per point. Evaluation of such integrals has been optimized in this paper giving an asymptotic operation count of per point on the average. In actual implementation, the algorithm has even better computational complexity, approximately of the order of per point. The algorithm has the added advantage of working in place, meaning that no additional memory storage is required beyond that of the initial data. This paper is a result of application of many of the original ideas described in Daripa [3].展开更多
A fast algorithm for DOA estimation without eigendecomposition is proposed. Unlike the available propagation method (PM), the proposed method need only use partial cross-correlation of array output data, and hence the...A fast algorithm for DOA estimation without eigendecomposition is proposed. Unlike the available propagation method (PM), the proposed method need only use partial cross-correlation of array output data, and hence the computational complexity is further reduced. Moreover, the proposed method is suitable for the case of spatially nonuniform colored noise. Simulation results show the performance of the proposed method is comparable to those of the existing PM method and the standard MUSIC method.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
Conditional Nonlinear Optimal Perturbation (CNOP) is a new method proposed by Mu et al. in 2003, which generalizes the linear singular vector (LSV) to include nonlinearity. It has become a powerful tool for studyi...Conditional Nonlinear Optimal Perturbation (CNOP) is a new method proposed by Mu et al. in 2003, which generalizes the linear singular vector (LSV) to include nonlinearity. It has become a powerful tool for studying predictability and sensitivity among other issues in nonlinear systems. This is because the CNOP is able to represent, while the LSV is unable to deal with, the fastest developing perturbation in a nonlinear system. The wide application of this new method, however, has been limited due to its large computational cost related to the use of an adjoint technique. In order to greatly reduce the computational cost, we hereby propose a fast algorithm for solving the CNOP based on the empirical orthogonal function (EOF). The algorithm is tested in target observation experiments of Typhoon Matsa using the Global/Regional Assimilation and PrEdiction System (GRAPES), an operational regional forecast model of China. The effectivity and feasibility of the algorithm to determine the sensitivity (target) area is evaluated through two observing system simulation experiments (OSSEs). The results, as expected, show that the energy of the CNOP solved by the new algorithm develops quickly and nonlinearly. The sensitivity area is effectively identified with the CNOP from the new algorithm, using 24 h as the prediction time window. The 24-h accumulated rainfall prediction errors (ARPEs) in the verification region are reduced significantly compared with the "true state," when the initial conditions (ICs) in the sensitivity area are replaced with the "observations." The decrease of the ARPEs can be achieved for even longer prediction times (e.g., 72 h). Further analyses reveal that the decrease of the 24-h ARPEs in the verification region is attributable to improved simulations of the typhoon's initial warm-core, upper level relative vorticity, water vapor conditions, etc., as a result of the updated ICs in the sensitivity area.展开更多
An efficient algorithm for determining the linear complexity and the minimal polynomial of a binary sequence with period 2npm is proposed and proved, where 2 is a primitive root modulo p2. The new algorithm generalize...An efficient algorithm for determining the linear complexity and the minimal polynomial of a binary sequence with period 2npm is proposed and proved, where 2 is a primitive root modulo p2. The new algorithm generalizes the algorithm for computing the linear complexity of a binary sequence with period 2' and the algorithm for computing the linear complexity of a binary sequence with period pn, where 2 is a primitive root modulo p2.展开更多
A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the seg...A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.展开更多
An acoustic vector sensor(AVS)can capture more information than a conventional acoustic pressure sensor(APS).As a result,more output channels are required when multiple AVS are formed into arrays,making processing the...An acoustic vector sensor(AVS)can capture more information than a conventional acoustic pressure sensor(APS).As a result,more output channels are required when multiple AVS are formed into arrays,making processing the data stream computationally intense.This paper proposes a new algorithm based on the propagator method for wideband coherent sources that eliminates eigen-decomposition in order to reduce the computational burden.Data from simulations and lake trials showed that the new algorithm is valid:it resolves coherent sources,breaks left/right ambiguity,and allows inter element spacing to exceed a half-wavelength.展开更多
The main purpose of this paper is to solve the viscous Cahn-Hilliard equation via a fast algorithm based on the two time-mesh(TT-M)finite element(FE)method to ease the problem caused by strong nonlinearities.The TT-M ...The main purpose of this paper is to solve the viscous Cahn-Hilliard equation via a fast algorithm based on the two time-mesh(TT-M)finite element(FE)method to ease the problem caused by strong nonlinearities.The TT-M FE algorithm includes the following main computing steps.First,a nonlinear FE method is applied on a coarse time-meshτ_(c).Here,the FE method is used for spatial discretization and the implicit second-orderθscheme(containing both implicit Crank-Nicolson and second-order backward difference)is used for temporal discretization.Second,based on the chosen initial iterative value,a linearized FE system on time fine mesh is solved,where some useful coarse numerical solutions are found by Lagrange’s interpolation formula.The analysis for both stability and a priori error estimates is made in detail.Numerical examples are given to demonstrate the validity of the proposed algorithm.Our algorithm is compared with the traditional Galerkin FE method and it is evident that our fast algorithm can save computational time.展开更多
In order to alleviate the shortcomings of most blind deconvolution algorithms,this paper proposes an improved fast algorithm for blind deconvolution based on decorrelation technique and broadband block matrix.Althougt...In order to alleviate the shortcomings of most blind deconvolution algorithms,this paper proposes an improved fast algorithm for blind deconvolution based on decorrelation technique and broadband block matrix.Althougth the original algorithm can overcome the shortcomings of current blind deconvolution algorithms,it has a constraint that the number of the source signals must be less than that of the channels.The improved algorithm deletes this constraint by using decorrelation technique.Besides,the improved algorithm raises the separation speed in terms of improving the computing methods of the output signal matrix.Simulation results demonstrate the validation and fast separation of the improved algorithm.展开更多
This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, ...This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.展开更多
The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(M...The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.展开更多
文摘To improve the performance of Saitou and Nei's algorithm (SN) and Studier and Keppler's improved algorithm (SK) for constructing neighbor-joining phylogenetic trees and reduce the time complexity of the computation, a fast algorithm is proposed. The proposed algorithm includes three techniques. First, a linear array A[N] is introduced to store the sum of every row of the distance matrix (the same as SK), which can eliminate many repeated computations. Secondly, the value of A [i] is computed only once at the beginning of the algorithm, and is updated by three elements in the iteration. Thirdly, a very compact formula for the sum of all the branch lengths of operational taxonomic units (OTUs) i and j is designed, and the correctness of the formula is proved. The experimental results show that the proposed algorithm is from tens to hundreds times faster than SN and roughly two times faster than SK when N increases, constructing a tree with 2 000 OTUs in 3 min on a current desktop computer. To earn the time with the cost of the space and reduce the computations in the innermost loop are the basic solutions for algorithms with many loops.
基金Project supported by the National Natural Science Foundation of China(No.11202236)
文摘A fast algorithm is proposed to predict penetration trajectory in simulation of normal and oblique penetration of a rigid steel projectile into a limestone target. The algorithm is designed based on the idea of isolation between the projectile and the target. Corresponding factors of influence are considered, including analytical load model, cratering effect, free surface effect, and separation-reattachment phenomenon. Besides, a method of cavity ring is used to study the process of cavity expansion. Further, description of the projectile's three-dimensional gesture is coded for fast calculation, named PENE3D. A presented. As a result, the algorithm is series of cases with selected normal and oblique penetrations are simulated by the algorithm. The predictions agree with the results of tests, showing that the proposed algorithm is fast and effective in simulation of the penetration process and prediction of the penetration trajectory.
文摘An iterative algorithm to calculate mutual correlation using hierarchical key points and the search space mark principle is proposed. An effective algorithm is designed to improve the matching speed. By hi-erarchical key point algorithm and mutual correlation coefficients of the matching images, the important points can be iteratively calculated in the images hierarchically, and the correlation coefficient can be ob-tained with satisfactory precision. Massive spots in the parameter space which are impossible to match can be removed by the search space mark principle. Two approximate continuities in the correlation image matching process, the image gray level distribution continuity and the correlation coefficient value in the parameter space continuity, are considered in the method. The experiments show that the new algorithm can greatly enhance matching speed and achieve accurate matching results.
文摘Images captured outdoor usually degenerate because of the bad weather conditions,among which fog,one of the widespread phenomena,affects the video quality greatly.The physical features of fog make the video blurred and the visible distance shortened,seriously impairing the reliability of the video system.In order to satisfy the requirement of image processing in real-time,the normal distribution curve fitting technology is used to fit the histogram of the sky part and the region growing method is used to segment the region of sky.As for the non-sky part,a method of self-adaptive interpolation to equalize the histogram is adopted to enhance the contrast of the images.Experiment results show that the method works well and will not cause block effect.
文摘Making use of this expression to calculate the phase grating in high resolution image simulation can greatly reduce the calculating time. In this paper, the derivation of the expression is introduced, and then the computer routine is explained in details. Finally the potential projection map of Mg44Rh7 along [001] direction is shown as an illustration. All operations are carried out in real space, so we call the calculation method as the real space method.
基金Supported by the National Natural Science Foundation of China(11271156 and 11171133)the Technology Development Plan of Jilin Province(20130522104JH)
文摘Multivariate Hermite interpolation is widely applied in many fields, such as finite element construction, inverse engineering, CAD etc.. For arbitrarily given Hermite interpolation conditions, the typical method is to compute the vanishing ideal I (the set of polynomials satisfying all the homogeneous interpolation conditions are zero) and then use a complete residue system modulo I as the interpolation basis. Thus the interpolation problem can be converted into solving a linear equation system. A generic algorithm was presented in [18], which is a generalization of BM algorithm [22] and the complexity is O(τ^3) where r represents the number of the interpolation conditions. In this paper we derive a method to obtain the residue system directly from the relative position of the points and the corresponding derivative conditions (presented by lower sets) and then use fast GEPP to solve the linear system with O((τ + 3)τ^2) operations, where τ is the displacement-rank of the coefficient matrix. In the best case τ = 1 and in the worst case τ = [τ/n], where n is the number of variables.
文摘In this paper, a new algorithm for the fast computation of a 2-D discrete cosine transform (DCT) is presented. It is shown that the N×N DCT, where N = 2m, can be computed using only N 1-D DCT’s and additions, instead of using 2N 1-D DCT’s as in the conventional row-column approach. Hence the total number of multiplications for the proposed algorithm is only half of that required for the row-column approach, and is also less than that of most of other fast algorithms, while the number of additions is almost comparable to that of others.
文摘DHT of length p<sup>l</sup>q(p is odd and q is arbitrary) is turned into p<sup>l</sup> DHTs of length qand some additional operations, while the additional operations only involves the computation ofcos-DFT and sin-DFT with length p. If the length of a DHT is p<sub>1</sub><sup>l<sub>1</sub></sup>…P<sub>N</sub><sup>l<sub>N</sub></sup>2<sup>l</sup>(P<sub>1</sub>…,P<sub>N</sub> are oddprimes), a fast algorithm is obtained by the similar recursive technique. Therefore, the algorithmcan compute DHT of arbitrary length. The paper also Proves that operations for computingDHT of length N by the algorithm are no more than O(Nlog<sub>2</sub>N), when the length is N=p<sup>l</sup>,operations of the algorithm are fewer than that of other known algorithms.
文摘An algorithm is provided for the fast and accurate computation of the solution of the Bitsadze equation in the complex plane in the interior of the unit disk. The algorithm is based on the representation of the solution in terms of a double integral as it shown by Begehr [1,2], some recursive relations in Fourier space, and Fast Fourier Transforms. The numerical evaluation of integrals at points on a polar coordinate grid by straightforward summation for the double integral would require floating point operation per point. Evaluation of such integrals has been optimized in this paper giving an asymptotic operation count of per point on the average. In actual implementation, the algorithm has even better computational complexity, approximately of the order of per point. The algorithm has the added advantage of working in place, meaning that no additional memory storage is required beyond that of the initial data. This paper is a result of application of many of the original ideas described in Daripa [3].
文摘A fast algorithm for DOA estimation without eigendecomposition is proposed. Unlike the available propagation method (PM), the proposed method need only use partial cross-correlation of array output data, and hence the computational complexity is further reduced. Moreover, the proposed method is suitable for the case of spatially nonuniform colored noise. Simulation results show the performance of the proposed method is comparable to those of the existing PM method and the standard MUSIC method.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金Supported by the "973" Project of the Ministry of Science and Technology of China under Grant No. 2004CB418304the China Meteorological Administration R&D Special Fund for Public Welfare (meteorology) under Grant No. GYHY(QX)2007-6-15
文摘Conditional Nonlinear Optimal Perturbation (CNOP) is a new method proposed by Mu et al. in 2003, which generalizes the linear singular vector (LSV) to include nonlinearity. It has become a powerful tool for studying predictability and sensitivity among other issues in nonlinear systems. This is because the CNOP is able to represent, while the LSV is unable to deal with, the fastest developing perturbation in a nonlinear system. The wide application of this new method, however, has been limited due to its large computational cost related to the use of an adjoint technique. In order to greatly reduce the computational cost, we hereby propose a fast algorithm for solving the CNOP based on the empirical orthogonal function (EOF). The algorithm is tested in target observation experiments of Typhoon Matsa using the Global/Regional Assimilation and PrEdiction System (GRAPES), an operational regional forecast model of China. The effectivity and feasibility of the algorithm to determine the sensitivity (target) area is evaluated through two observing system simulation experiments (OSSEs). The results, as expected, show that the energy of the CNOP solved by the new algorithm develops quickly and nonlinearly. The sensitivity area is effectively identified with the CNOP from the new algorithm, using 24 h as the prediction time window. The 24-h accumulated rainfall prediction errors (ARPEs) in the verification region are reduced significantly compared with the "true state," when the initial conditions (ICs) in the sensitivity area are replaced with the "observations." The decrease of the ARPEs can be achieved for even longer prediction times (e.g., 72 h). Further analyses reveal that the decrease of the 24-h ARPEs in the verification region is attributable to improved simulations of the typhoon's initial warm-core, upper level relative vorticity, water vapor conditions, etc., as a result of the updated ICs in the sensitivity area.
基金This work was supported in part by the National Natural Science Foundation of China ( Grant No.60073051) the Natural Science Foundation of Education Council of Anhui Province.
文摘An efficient algorithm for determining the linear complexity and the minimal polynomial of a binary sequence with period 2npm is proposed and proved, where 2 is a primitive root modulo p2. The new algorithm generalizes the algorithm for computing the linear complexity of a binary sequence with period 2' and the algorithm for computing the linear complexity of a binary sequence with period pn, where 2 is a primitive root modulo p2.
文摘A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex hackground and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.
基金the National 863 Plan Project of Ministry of Science and Technology of China under Grant No.2006AA09Z234
文摘An acoustic vector sensor(AVS)can capture more information than a conventional acoustic pressure sensor(APS).As a result,more output channels are required when multiple AVS are formed into arrays,making processing the data stream computationally intense.This paper proposes a new algorithm based on the propagator method for wideband coherent sources that eliminates eigen-decomposition in order to reduce the computational burden.Data from simulations and lake trials showed that the new algorithm is valid:it resolves coherent sources,breaks left/right ambiguity,and allows inter element spacing to exceed a half-wavelength.
基金supported by the Research Project Supported by Shanxi Scholarship Council of China(No.2021-029)the Key Research and Development(R&D)Projects of Shanxi Province(No.201903D121038)the Natural Science Foundation of Shanxi Province(Nos.201801D121016,201901D111123).
文摘The main purpose of this paper is to solve the viscous Cahn-Hilliard equation via a fast algorithm based on the two time-mesh(TT-M)finite element(FE)method to ease the problem caused by strong nonlinearities.The TT-M FE algorithm includes the following main computing steps.First,a nonlinear FE method is applied on a coarse time-meshτ_(c).Here,the FE method is used for spatial discretization and the implicit second-orderθscheme(containing both implicit Crank-Nicolson and second-order backward difference)is used for temporal discretization.Second,based on the chosen initial iterative value,a linearized FE system on time fine mesh is solved,where some useful coarse numerical solutions are found by Lagrange’s interpolation formula.The analysis for both stability and a priori error estimates is made in detail.Numerical examples are given to demonstrate the validity of the proposed algorithm.Our algorithm is compared with the traditional Galerkin FE method and it is evident that our fast algorithm can save computational time.
基金Natural Science Fund of Anhui Province of China (050420101)
文摘In order to alleviate the shortcomings of most blind deconvolution algorithms,this paper proposes an improved fast algorithm for blind deconvolution based on decorrelation technique and broadband block matrix.Althougth the original algorithm can overcome the shortcomings of current blind deconvolution algorithms,it has a constraint that the number of the source signals must be less than that of the channels.The improved algorithm deletes this constraint by using decorrelation technique.Besides,the improved algorithm raises the separation speed in terms of improving the computing methods of the output signal matrix.Simulation results demonstrate the validation and fast separation of the improved algorithm.
基金the Natural Science Foundation of China (No.60472037).
文摘This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.
基金supported by the National Basic Research Program of China (973 Program) (61320)
文摘The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.