This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ...This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.展开更多
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ...Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.展开更多
Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis...Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis,which are difficult to meet the requirements for high accuracy and efficiency in modern wheat quality detection due to the disadvantages of subjectivity,destruction of sample integrity and low efficiency.With the rapid development of optical technology,various optical-based methods,using near-infrared spectroscopy technology,hyperspectral imaging technology and terahertz,etc.,have been proposed for wheat quality detection.These methods have the characteristics of nondestructiveness and high efficiency which make them popular in wheat quality detection in recent years.In this paper,various state-of-the-art optical-based techniques of wheat quality detection are analyzed and summarized in detail.Firstly,the principle and process of common optical non-destructive detection methods for wheat quality are introduced.Then,the optical techniques used in these detection methods are divided into seven categories,and the comparison of these technologies and their advantages and disadvantages are further discussed.It shows that terahertz technology is regarded as the most promising wheat quality detection method compared with other optical detection technologies,because it can not only detect most types of wheat deterioration,but also has higher accuracy and efficiency.Finally,the research of optical technology in wheat quality detection is prospected.The future research of optical technology-based wheat quality detection mainly includes the construction of wheat quality optical detection standardization database,the fusion of multiple optical detection technologies and multiple quality index information,the improvement of the anti-interference of optical technology and the industrialization of optical inspection technology for wheat quality.These studies are of great significance to improve the detection technology of wheat and ensure the storage safety of wheat in the future.展开更多
Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environment...We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.展开更多
On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both ...On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.展开更多
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me...A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.展开更多
Current trends in chiral analysis of pharmaceutical drugs are focused on faster separations and higher separation efficiencies, Core-shell or superficially porous particles (SPP) based chiral stationary phases (CSP...Current trends in chiral analysis of pharmaceutical drugs are focused on faster separations and higher separation efficiencies, Core-shell or superficially porous particles (SPP) based chiral stationary phases (CSPs) provide reduced analysis times while maintaining high column efficiencies and sensitivity. In this study, mobile phase conditions suitable for chiral analyses with electrospray ionization LC-MS were systematically investigated using vancomycin as a representative CSP. The performance of a 2.7 μm SPP based vancomycin CSP (SPP-V) 10 cm ×0.21 cm column was compared to that of a corresponding 5 μm fully porous particles based analogue column. The results demonstrated that the SPP-V column provides higher efficiencies, 2-5 time greater sensitivity and shorter analysis time for a set of 22 basic pharma- ceutical drugs. The SPP-V was successfully applied for the analysis of the degradation products of racemic citalopram whose enantiomers could be selectively identified by MS.展开更多
This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant disc...This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant discrete-time one and an unknown input observer (UIO) is considered as FDF to generate residual. The design of FDF is formulated as an H∞ optimization problem and a solvable condition as well as an optimal solution are derived. The causality of the residual generator can be guaranteed so that the fast rate residual can be implemented via inverse lifting. A numerical example is included to demonstrate the feasibility of the obtained results.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has an active reflector.During observations, the reflector will be deformed into a paraboloid 300 meters in diameter. To improve its surface accuracy, we...The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has an active reflector.During observations, the reflector will be deformed into a paraboloid 300 meters in diameter. To improve its surface accuracy, we propose a scheme for photogrammetry to measure the positions of 2226 nodes on the reflector. The way to detect the nodes in the photos is the key problem in this application of photogrammetry. This paper applies a convolutional neural network(CNN) with candidate regions to detect the nodes in the photos. Experimental results show a high recognition rate of 91.5%, which is much higher than the recognition rate for traditional edge detection.展开更多
Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Perfo...Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Performance evaluation through the Receiver Operating Characteristics (ROCs) are presented and compared from the viewpoint of probability of detection (Pd), probability of false alarm (Pfa) by computer simulation. When the sinusoid frequency does not correspond to one of the spectral bins (mid-bin frequency situation), the performance of all the mentioned detectors degrades. This research investigates the development of a bearing estimation method using Fast Orthogonal Search (FOS) to enhance spectral estimation which, improves both target detection and bearing estimation in case of low SNR inputs.展开更多
[Objective] The study aimed to discuss the application of boron-doped diamond (BDD) film electrode in fast detection of samonella in water. [ Method] Boron-doped diamond film electrode was prepared and used as the w...[Objective] The study aimed to discuss the application of boron-doped diamond (BDD) film electrode in fast detection of samonella in water. [ Method] Boron-doped diamond film electrode was prepared and used as the working electrode in fast detection of salmonella in water using chronoamberometry, and the oxidation mechanism of the electrode acting on salmonella was discussed. [ Result] Compared with traditional biologi- cal methods, chronoamperometry could detect the number of salmonellae in water more simply, rapidly and sensitively. [ Conclusion] The method of using BDD electrode to detect salmonella quantity will be widely applied in future.展开更多
This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius c...This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius circle to scout a certain destination.As defenders,the UAVs are arranged into three layers:the forward layer,the midfield layer and the back layer.The co-defense mechanism,including the role derivation method of UAV swarm and a guidance law based on the co-defense front point,is introduced for UAV swarm to co-detect the intruder.Besides,five formations are designed for comparative analysis when ten UAVs are applied.Through Monte Carlo experiments and ablation experiment,the effectiveness of the proposed co-defense method has been verified.展开更多
As one of the most important tumor-associated antigens of colorectal adenocarcinoma, the carcinoembryonic antigen (CEA) threatens human health seriously ali over the globe. Fast electrical and highly sensitive detec...As one of the most important tumor-associated antigens of colorectal adenocarcinoma, the carcinoembryonic antigen (CEA) threatens human health seriously ali over the globe. Fast electrical and highly sensitive detection of the CEA with A1GaN/GaN high electron mobility transistor is demonstrated experimentally. To achieve a low detection limit, the Au-gated sensing area of the sensor is functionalized with a CEA aptamer instead of the corresponding antibody. The proposed aptasensor has successfully detected different concentrations (ranging from 50picogram/milliliter (pg/ml) to 50 nanogram/milliliter (ng/ml)) of CEA and achieved a detection limit as low as 50pg/ml at Vas = 0.5 V. The drain-source current shows a c/ear increase of 11.5μA under this bias.展开更多
The vanishing point detection technology helps automatic driving. In this paper, the straight lines on the road associated with the vanishing point are extracted efficiently by using the regional division and angle li...The vanishing point detection technology helps automatic driving. In this paper, the straight lines on the road associated with the vanishing point are extracted efficiently by using the regional division and angle limitation. And, the vanishing point is detected robustly by using the fast M-estimation method. Proposed method could detect straight-line features associated with vanishing point detection efficient on the road. And the vanishing point was detected exactly by the effect of the fast M-estimation method when the straight-line features not associated with vanishing point detection were detected. The processing time of the proposed method was faster than the camera flame rate (30 fps). Thus, the proposed method is capable of real-time processing.展开更多
Fast neutron activation of nitrogen and oxygen contained in the explosives used for simulated mine samples has been preliminarily carried out in our laboratory. By spectroscopic analysis of characteristic γ-rays emit...Fast neutron activation of nitrogen and oxygen contained in the explosives used for simulated mine samples has been preliminarily carried out in our laboratory. By spectroscopic analysis of characteristic γ-rays emitted from activated nitrogen and oxygen, mine can be identified almost instantly. This technique integrated with robottes would be a method for mine scavenging.展开更多
The muon radiography imaging technique for high-atomic-number objects(Z)and large-volume objects via muon transmission imaging and muon multiple scattering imaging remains a popular topic in the field of radiation det...The muon radiography imaging technique for high-atomic-number objects(Z)and large-volume objects via muon transmission imaging and muon multiple scattering imaging remains a popular topic in the field of radiation detection imaging.However,few imaging studies have been reported on low and medium Z objects at the centimeter scale.This paper presents an imaging system that consists of three layers of a position-sensitive detector and four plastic scintillation detectors.It acquires data by coincidence detection technique of cosmic-ray muon and its secondary particles.A 3D imaging algorithm based on the density of the coinciding muon trajectory was developed,and 4D imaging that takes the atomic number dimension into account by considering the secondary particle ratio information was achieved.The resultant reconstructed 3D images could distinguish between a series of cubes with 5-mm-side lengths and 2-mm-intervals.If the imaging time is more than 20 days,this method can distinguish intervals with a width of 1 mm.The 4D images can specify target objects with low,medium,and high Z values.展开更多
文摘This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.
文摘Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.
基金supported by the scientific and technological key project in Henan Province (No.212102210148)Open fund of Key Laboratory of Grain Information Processing and Control (No.KFJJ-2018-101)
文摘Wheat quality detection is essential to ensure the safety ofwheat circulation and storage.The traditional wheat quality detection methods mainly include artificial sensory evaluation and physicochemical index analysis,which are difficult to meet the requirements for high accuracy and efficiency in modern wheat quality detection due to the disadvantages of subjectivity,destruction of sample integrity and low efficiency.With the rapid development of optical technology,various optical-based methods,using near-infrared spectroscopy technology,hyperspectral imaging technology and terahertz,etc.,have been proposed for wheat quality detection.These methods have the characteristics of nondestructiveness and high efficiency which make them popular in wheat quality detection in recent years.In this paper,various state-of-the-art optical-based techniques of wheat quality detection are analyzed and summarized in detail.Firstly,the principle and process of common optical non-destructive detection methods for wheat quality are introduced.Then,the optical techniques used in these detection methods are divided into seven categories,and the comparison of these technologies and their advantages and disadvantages are further discussed.It shows that terahertz technology is regarded as the most promising wheat quality detection method compared with other optical detection technologies,because it can not only detect most types of wheat deterioration,but also has higher accuracy and efficiency.Finally,the research of optical technology in wheat quality detection is prospected.The future research of optical technology-based wheat quality detection mainly includes the construction of wheat quality optical detection standardization database,the fusion of multiple optical detection technologies and multiple quality index information,the improvement of the anti-interference of optical technology and the industrialization of optical inspection technology for wheat quality.These studies are of great significance to improve the detection technology of wheat and ensure the storage safety of wheat in the future.
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.
文摘We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.
文摘On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.
文摘A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.
基金supported by the Robert A.Welch Foundation(Y0026)the French National Center for Scientific Research(ISA-CNRS-UMR5280)
文摘Current trends in chiral analysis of pharmaceutical drugs are focused on faster separations and higher separation efficiencies, Core-shell or superficially porous particles (SPP) based chiral stationary phases (CSPs) provide reduced analysis times while maintaining high column efficiencies and sensitivity. In this study, mobile phase conditions suitable for chiral analyses with electrospray ionization LC-MS were systematically investigated using vancomycin as a representative CSP. The performance of a 2.7 μm SPP based vancomycin CSP (SPP-V) 10 cm ×0.21 cm column was compared to that of a corresponding 5 μm fully porous particles based analogue column. The results demonstrated that the SPP-V column provides higher efficiencies, 2-5 time greater sensitivity and shorter analysis time for a set of 22 basic pharma- ceutical drugs. The SPP-V was successfully applied for the analysis of the degradation products of racemic citalopram whose enantiomers could be selectively identified by MS.
基金Supported by National Natural Science Foundation of P. R. China (60374021)the Natural Science Foundation of Shandong Province (Y2002G05)the Youth Scientists Foundation of Shandong Province (03BS091, 05BS01007) and Education Ministry Foundation of P. R. China (20050422036)
文摘This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant discrete-time one and an unknown input observer (UIO) is considered as FDF to generate residual. The design of FDF is formulated as an H∞ optimization problem and a solvable condition as well as an optimal solution are derived. The causality of the residual generator can be guaranteed so that the fast rate residual can be implemented via inverse lifting. A numerical example is included to demonstrate the feasibility of the obtained results.
基金supported by study on the fusion of total station dynamic tracking measuring and IMU inertial measuring for the feed support measurement in FAST (Grant No. 11503048)the Open Project Program of the Key Laboratory of FAST, NAOC, Chinese Academy of Sciencesthe Key Laboratory of Radio Astronomy, Chinese Academy of Sciences
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has an active reflector.During observations, the reflector will be deformed into a paraboloid 300 meters in diameter. To improve its surface accuracy, we propose a scheme for photogrammetry to measure the positions of 2226 nodes on the reflector. The way to detect the nodes in the photos is the key problem in this application of photogrammetry. This paper applies a convolutional neural network(CNN) with candidate regions to detect the nodes in the photos. Experimental results show a high recognition rate of 91.5%, which is much higher than the recognition rate for traditional edge detection.
文摘Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Performance evaluation through the Receiver Operating Characteristics (ROCs) are presented and compared from the viewpoint of probability of detection (Pd), probability of false alarm (Pfa) by computer simulation. When the sinusoid frequency does not correspond to one of the spectral bins (mid-bin frequency situation), the performance of all the mentioned detectors degrades. This research investigates the development of a bearing estimation method using Fast Orthogonal Search (FOS) to enhance spectral estimation which, improves both target detection and bearing estimation in case of low SNR inputs.
基金the Project of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China(2011QK345)Natural Science Foundation of Guangxi,China(0728048)
文摘[Objective] The study aimed to discuss the application of boron-doped diamond (BDD) film electrode in fast detection of samonella in water. [ Method] Boron-doped diamond film electrode was prepared and used as the working electrode in fast detection of salmonella in water using chronoamberometry, and the oxidation mechanism of the electrode acting on salmonella was discussed. [ Result] Compared with traditional biologi- cal methods, chronoamperometry could detect the number of salmonellae in water more simply, rapidly and sensitively. [ Conclusion] The method of using BDD electrode to detect salmonella quantity will be widely applied in future.
基金the Aeronautical Science Foundation of China(2020Z023053001).
文摘This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius circle to scout a certain destination.As defenders,the UAVs are arranged into three layers:the forward layer,the midfield layer and the back layer.The co-defense mechanism,including the role derivation method of UAV swarm and a guidance law based on the co-defense front point,is introduced for UAV swarm to co-detect the intruder.Besides,five formations are designed for comparative analysis when ten UAVs are applied.Through Monte Carlo experiments and ablation experiment,the effectiveness of the proposed co-defense method has been verified.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301the National Natural Science Foundation of China under Grant No 61334002the National Science and Technology Major Project
文摘As one of the most important tumor-associated antigens of colorectal adenocarcinoma, the carcinoembryonic antigen (CEA) threatens human health seriously ali over the globe. Fast electrical and highly sensitive detection of the CEA with A1GaN/GaN high electron mobility transistor is demonstrated experimentally. To achieve a low detection limit, the Au-gated sensing area of the sensor is functionalized with a CEA aptamer instead of the corresponding antibody. The proposed aptasensor has successfully detected different concentrations (ranging from 50picogram/milliliter (pg/ml) to 50 nanogram/milliliter (ng/ml)) of CEA and achieved a detection limit as low as 50pg/ml at Vas = 0.5 V. The drain-source current shows a c/ear increase of 11.5μA under this bias.
文摘The vanishing point detection technology helps automatic driving. In this paper, the straight lines on the road associated with the vanishing point are extracted efficiently by using the regional division and angle limitation. And, the vanishing point is detected robustly by using the fast M-estimation method. Proposed method could detect straight-line features associated with vanishing point detection efficient on the road. And the vanishing point was detected exactly by the effect of the fast M-estimation method when the straight-line features not associated with vanishing point detection were detected. The processing time of the proposed method was faster than the camera flame rate (30 fps). Thus, the proposed method is capable of real-time processing.
文摘Fast neutron activation of nitrogen and oxygen contained in the explosives used for simulated mine samples has been preliminarily carried out in our laboratory. By spectroscopic analysis of characteristic γ-rays emitted from activated nitrogen and oxygen, mine can be identified almost instantly. This technique integrated with robottes would be a method for mine scavenging.
基金supported by the Ministry of Science and Technology of China Foundation(No.2020YFE0202001)the National Natural Science Foundation of China(No.11875163)the Natural Science Foundation of Hunan Province(No.2021JJ20006).
文摘The muon radiography imaging technique for high-atomic-number objects(Z)and large-volume objects via muon transmission imaging and muon multiple scattering imaging remains a popular topic in the field of radiation detection imaging.However,few imaging studies have been reported on low and medium Z objects at the centimeter scale.This paper presents an imaging system that consists of three layers of a position-sensitive detector and four plastic scintillation detectors.It acquires data by coincidence detection technique of cosmic-ray muon and its secondary particles.A 3D imaging algorithm based on the density of the coinciding muon trajectory was developed,and 4D imaging that takes the atomic number dimension into account by considering the secondary particle ratio information was achieved.The resultant reconstructed 3D images could distinguish between a series of cubes with 5-mm-side lengths and 2-mm-intervals.If the imaging time is more than 20 days,this method can distinguish intervals with a width of 1 mm.The 4D images can specify target objects with low,medium,and high Z values.