This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, ro...This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, root and shoot lengths, root biomass and shoot biomass) in Albizia saman and Leucaena leucocephala. The assessment started 60 days after seeding. The study revealed that nodulation response and biomass production in both species showed significant differences over time(p < 0.05) in all variables except in the root-shoot ratio(oven-dry) of L. leucocephala. The study also showed significant differences(p < 0.05) in nodule formation and biomass production at the end of the study period between the two species except in the number of nodules and leaves and the green root-shoot ratio. There were strong positive correlations between nodule formation and biomass production, i.e., the number of nodules and the age of plants, the number of nodules and leaves, as well as the number of nodules and biomass(root biomass and shoot biomass) in both species. The results obtained using principal component analysis(PCA) and correlation coefficients of the different characteristics of nodulation and biomass production were similar in both species. The PCA showed that shoot biomass(shoot green weight and shoot oven-dry weight) is positively correlated with PC1(with an eigenvalue of 7.50) and root length is positively correlated with PC2(with an eigenvalue of 0.19) in the case of A. saman. In the case of L. leucocephala, the PCA revealed that root biomass(root green weight and root oven-dry weight), shoot biomass and shoot length are also positively correlated with PC1, while nodule formation and the number of leaves are positively correlated with PC2(with an eigenvalue PC1 of 6.92 and PC2 of 0.49).展开更多
Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemi...Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.展开更多
Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient i...Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient in temperate hill forest,central Nepal.Data were collected from 300 sample plots within vertical elevation bands of 10,ranging from 1365 to 2450 m asl.A random sampling method was used for data collection in three seasons,winter,pre-monsoon and post monsoon seasons.Diameter at breast height(DBH)was used to broadly categorize the plant individual into trees,saplings and seedlings.The tree species richness ranged from 12 to 25 with density of 350 to 1200 individuals per hectare.Species richness of tree and sapling showed statistically significant unimodal pattern,which peaked at mid-elevation.Elevation showed a strong and positive linear correlation with the seedling density(Deviance=0.99,p<0.001)and a significant hump-shaped relationship with sapling density(Deviance=0.95,p<0.001).Similarly,elevations showed a statistically significant negative hump-shaped relationship with all trees,saplings and seedling stages(Deviances=0.89,0.87 and 0.57).The highest values of the Shannon-Wiener index and the lowest value of the Simpson index were found at mid-elevation for all growth forms.Nearly 92%of tree species were found at regenerating stage;49%in a good renewal regeneration status,32%in fair renewal regeneration,and 11%at a poor regenerating condition.Nevertheless,4%of tree species were reported as non-regenerating stages and 4%were newly introduced species.Hence,the regeneration status of the study area was considered fairly well since sapling(78.5%)>seedling(10.6%)≤mature(10.9%).Among tested environmental variables,elevation and annual mean rainfall were the most influential factors in the regeneration of tree species.展开更多
Plant carbon(C)concentration is a fundamental trait for estimating C storage and nutrient utilization.However,the mechanisms of C concentration variations among different tree tissues and across species remains poorly...Plant carbon(C)concentration is a fundamental trait for estimating C storage and nutrient utilization.However,the mechanisms of C concentration variations among different tree tissues and across species remains poorly understood.In this study,we explored the variations and determinants of C concentration of nine tissues from 216 individuals of 32 tree species,with particular attention on the effect of wood porosity(i.e.,non-porous wood,diffuse-porous wood,and ring-porous wood).The inter-tissue pattern of C concentration diverged across the three porosity types;metabolically active tissues(foliage and fine roots,except for the foliage of ring-porous species)generally had higher C levels compared with inactive wood.The poor inter-correlations between tissue C concentrations indicated a necessity of measuring tissue-and specific-C concentrations.Carbon concentration for almost all tissues generally decreased from non-porous,to diffuse-porous and to ring-porous.Tissue C was often positively correlated with tissue(foliage and wood)density and tree size,while negatively correlated with growth rate,depending on wood porosity.Our results highlight the mediating effect of type of wood porosity on the variation in tissue C among temperate species.The variations among tissues were more important than that among species.These findings provided insights on tissue C concentration variability of temperate forest species.展开更多
Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of inter...Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of interspecific competition and complementarity remain poorly understood.Taking into consideration strong-and weakspace competition(SC and WC),as well as N_(2)-fixing and non-N_(2)-fixing tree species(FN and nFN),a mixedspecies planting trial was conducted for Betula alnoides,a pioneer tree species,which was separately mixed with Acacia melanoxylon(SC+FN),Erythrophleum fordii(WC+FN),Eucalyptus cloeziana(SC+nFN)and Pinus kesiya var.langbianensis(WC+nFN)in southern China.Six years after planting,tree growth,total nitrogen(N)and carbon(C)contents,and the natural abundances of^(15)N and^(13)C in the leaves were measured for each species,and the mycorrhizal colonisation rates of B.alnoides were investigated under each treatment.Allometric variations and their relationships with space competition and nutrient-related factors were analyzed.The results showed a consistent effect of space competition on the height-diameter relationship of B.alnoides in mixtures with FN or nFN.The tree height growth of B.alnoides was significantly promoted under high space competition,and growth in diameter at breast height(DBH),tree height and crown size were all expedited in mixtures with FN.The symbiotic relationship between ectomycorrhizal fungi and B.alnoides was significantly influenced by both space competition and N_(2) fixation by the accompanying tree species,whereas such significant effects were absent for arbuscular mycorrhizal fungi.Furthermore,high space competition significantly decreased the water use efficiency(WUE)of B.alnoides,and its N use efficiency(NUE)was much lower in the FN mixtures.Structural equation modeling further demonstrated that the stem allometry of B.alnoides was affected by its NUE and WUE via changes in its height growth,and crown allometry was influenced by the mycorrhizal symbiotic relationship.Our findings provide new insights into the mechanisms driving tree allometric responses to above-and belowground resource competition and complementarity in mixed-species plantations,which are instructive for the establishment of mixed-species plantations.展开更多
Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twi...Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twigs and barks of 12 tree species in the mountain area of southwestern China have been tested and analyzed in the laboratory. The test and analysis indicate the results as follows:(1) for all the tree species, the fire resistance of leaves is much weaker than that of twigs and barks, and the broad leaves are stronger than those of conifers in fire resistance. (2) Heat value, moisture, ignition point and ash content are main indexes to affect fire resistance. Heat value relates to lignose content and benzene ethanol extractive content linearly.(3) Of all the 12 tree species, Schima superba,Castanopsis hystrix, Myrica rubra have the strongest resistance to fire; Machilus pauhoi, Michelia macclurei, Mytilaria laosensis, Camellia olifera and Manglietia tenuipes are relatively strong in fire resistance, and Lithocapus thalassica, Tsoongiodendron odorum, Cunninghamia lanceolata and Pinus massoniana are weak in fire resistance.展开更多
The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pin...The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pinus koraiensis Sieb. et Zucc. and Fraxinus rhynchophylla Hemsl. had spread rapidly towards west and east, respectively. The frontier form of species had close relation with its movement. The patch size of Pinus koraiensis , Populus davidiana Dode., Phellodendron amurense Rupr., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., Betula dahurica Pall., Picea koraiensis Nakai, Abies nephrolepis Maxim. and Larix olgeusis var. koreana Nakai decreased, however, Quercus mongolica Fisch., Betula costata Trautv., Acer mono Maxim., Tilia spp., Ulmus spp., Betula platyphylla Suk. and Fraxinus rhynchophylla increased. The frequency pattern of Populus davidiana , Betula platyphylla , Fraxinus rhynchophylla and Betula dahurica changed significantly. The dominance pattern of Populus davidiana , Tilia spp., Juglans mandshurica , Betula platyphylla , Betula dahurica and Abies nephrolepis changed significantly. The spatial correlation between Quercus mongolica and Betula dahurica , Betula costata and Picea spp., Betula costata and Abies nephrolepis , Picea spp. and Abies nephrolepis declined, however, the spatial correlation between Larix spp. and Betula platyphylla , Acer mono and Ulmus spp. increased.展开更多
By analyzing the application situation of greening tree species in Liuzhou City,this study aimed to put forward several strategies and suggestions for garden tree species planning in Liuzhou City according to relevant...By analyzing the application situation of greening tree species in Liuzhou City,this study aimed to put forward several strategies and suggestions for garden tree species planning in Liuzhou City according to relevant theories and principles.展开更多
[Objective] The aim was to study the growth and environment factors of three native tree species(Thespesia lampas,Calophyllum inophyllum and Hernandia sonora)in Hainan in coastal Casuarina equisetifolia plantation.[...[Objective] The aim was to study the growth and environment factors of three native tree species(Thespesia lampas,Calophyllum inophyllum and Hernandia sonora)in Hainan in coastal Casuarina equisetifolia plantation.[Method] The coastal sandy soil was treated by adding wood chips,bagasse and the control without adding anything in the plant pits.The growth of three native tree species planted for one year was analyzed.[Result] ① One year later,the survival rate showed an order of T.lampasH.sonoraC.inophyllum;the net increase of basal diameter showed an order of H.sonoraT.lampasC.inophyllum;while the net increase of plant height showed an order of T.lampasC.inophyllumH.sonora.The difference of survival rate between T.lampas and C.inophyllum was extremely significant,the difference of survival rate between H.sonora and C.inophyllum was significant,but the survival rate between T.lampas and H.sonora showed no significant difference.The difference on net growth of plant height among T.lampas,C.inophyllum and H.sonora was extremely significant,and the different on the net growth of basal diameter between T.lampas and C.inophyllum was significant.② Among different soil treatments,the survival rate of three native tree species in the treatment by adding wood chips,bagasse were higher than the treatment without adding anything,and the difference of survival rate of T.lampas between the treatment by adding wood chips,bagasse and the treatment without adding anything was extremely significant,but the treatment by adding wood chips and bagasse had not significant difference.③ The growth of three native tree species showed some correlation with environment factors(∣r∣0.3).The survival rate of T.lampas showed higher correlation with soil pH value and soil moisture,and the basal diameter and height of T.lampas showed some correlation with soil pH value and soil temperature.The survival rate of C.inophyllum showed higher correlation with soil pH value,soil temperature and light intensity,while the basal diameter and height of C.inophyllum showed some correlation with soil temperature.The survival rate of H.sonora showed higher correlation with soil salinity and soil temperature,while the basal diameter and height of H.sonora showed some correlation with soil temperature.The basal diameter and height of three native tree species had higher correlation(r0.5),which had reached a significant level.[Conclusion] In the one-year growth period in C.equisetifolia forest,the native tree species of T.lampas grew best and it was the most potential forest species mixed with C.equisetifolia.展开更多
Twenty-five tree species indigenous to Guangdong Province were chosen in this study to portray their distribution patterns in relation to environmental factors. Both data of species distribution and environmental fact...Twenty-five tree species indigenous to Guangdong Province were chosen in this study to portray their distribution patterns in relation to environmental factors. Both data of species distribution and environmental factors were tabulated based on a digitized map of Guangdong Province gridded at 0.5° latitude × 0.5° longitude. Grid-based diversity was mapped using DMAP, a distribution mapping program, and horizontal patterns were assessed using Kruskal-Wallis tests. The diversity center of the indige- nous tree species under study is located north of 23° N. These tree species exhibit significant latitudinal variation (P = 0.007 4), but no significant longitudinal difference (P = 0.052 2). Non-metric Multidimensional Scaling (NMS) identified five different ecological species groups, while Canonical Correspondence Analysis (CCA) showed the distribution of tree species along each of the five envi- ronmental gradients. An understanding of the environmental correlates of distribution patterns has great implication for the introduc- tion of the indigenous tree species for afforestation.展开更多
Abstract: Research on the ecological species groups and interspecific association of plant species are helpful to discover species coexistence processes and mechanisms, and to more fully understand plant community st...Abstract: Research on the ecological species groups and interspecific association of plant species are helpful to discover species coexistence processes and mechanisms, and to more fully understand plant community structure, function, and its taxonomy. However, little is known about the ecological species groups (ESG) and the interspecific association of dominant species in Daiyun Mountain National Nature Reserve of Fujian Province, China. Therefore, the main goal of this paper is to explore the ESG using maximal tree, and to analyze interspecific associations of 32 dominant species selected from lo2 sample plots using the chi-square test. The results show that: (1) 32 dominant species have a significant overall positive interspecific association, which indicates that the natural forest in Daiyun Mountain National Nature Reserve is stable, (a) The species pairs with weak associations, non-associations and positive associations account for lo.88%, 29.64% and 59.48% of the total 496 species pairs respectively, which suggests that the population distributions of the dominant species investigated are relatively independent, (3) The following species pairs may be useful for practical application, 〈Pinus taiwanensis, Rhododendron farrerae〉, 〈Castanopsis carlesii, Altingia chinensis〉, 〈C. carlesii, Castanopsis fargesii〉, 〈Castanopsis eyrei, C. fargesii〉, 〈P. taiwanensis, Fagus lucida〉 , 〈Machilus thunbergii, Castanopsis nigrescens〉, and (4) The results of clustering analysis based on the maximal tree method indicates that the 32 dominant species can be divided into 3 ESGs when A at o.6o, that is ESG I {Pinus massoniana, Cunning hamia lanceolata}, ESG II {P. taiwanensis, R. farrerae, Enkianthus quinqueflorus}, ESG III {C. carlesii, A. chinensis, C. eyrei, Castanopsis fabri, C. fargesii, Schima superba, Machilus thunbergii, Rhododendron latoueheae}. The results may be used for the selection of afforestation tree species in South China Forest Areas and guide the natural management of plantations.展开更多
Background: in recent studies, mixed forests were found to be more productive than monocultures with everything else remaining the same. Methods: To find out if this productivity is caused by tree species richness, ...Background: in recent studies, mixed forests were found to be more productive than monocultures with everything else remaining the same. Methods: To find out if this productivity is caused by tree species richness, by a more heterogeneous stand structure or both, we analyzed the effects of forest structure and tree species richness on stand productivity, based on inventory data of temperate forests in the United States of America and Germany. Results: Having accounted for effects such as tree size and stand density, we found that: (I) tree species richness increased stand productivity in both countries while the effect of tree size heterogeneity on productivity was negative in Germany but positive in the USA; (11) productivity was highest at sites with an intermediate amount of precipitation; and (111) growth limitations due water scarcity or low temperature may enhance structural heterogeneity. Conclusions: In the context of forest ecosystem goods and services, as well as future sustainable forest resource management, the associated implications would be:展开更多
Tree species diversity and population structure at different community types were described and analyzed for primary and secondary lowland moist deciduous forests in Tripura. Overall 10,957 individual trees belonging ...Tree species diversity and population structure at different community types were described and analyzed for primary and secondary lowland moist deciduous forests in Tripura. Overall 10,957 individual trees belonging to 46 family, 103 genera and 144 species were counted at ≥30 cm DBH (diameter at breast height) using 28 permanent belt transects with a size of 1 ha (10 m × 1000 m). Four different tree communities were identified. The primary forests was dominated by Shorea robusta (mean density 464.77 trees.ha^-1, 105 species) and Schima wallichii (336.25 trees.ha^-1, 82 species), while the secondary forests was dominated by Tectona grandis (333.88 trees.ha^-1, 105 species) and Hevea brasiliensis (299.67 trees.ha^-1, 82 species). Overall mean basal area in this study was 18.01m2.ha^-1; the maximum value was recorded in primary Shorea forest (26.21 m2.ha^-1). Mean density and diversity indices were differed significantly within four different communities. No significant differences were observed in number of species, genera, family and tree basal cover area. Significant relationships were found between the species richness and different tree population groups across the communities. Results revealed that species diversity and density were increased in those forests due to past disturbances which resulted in slow accumu- lation of native oligarchic small tree species. Seventeen species were recorded with 〈2 individuals of which Saraca asoka (Roxb.) de Wilde and Entada phaseoloides (L.) Men'. etc. extensively used in local ethnomedicinal formulations. The present S. robusta Gaertn dominated forest was recorded richer (105 species) than other reported studies. Moraceae was found more speciose family instead of Papilionaceae and Euphorbiaceae than other Indian moist deciduous forests. Seasonal phenological gap in such moist deciduous forests influenced the population of Trachypithecus pileatus and capped langur. The analysis of FIV suggested a slow trend of shifting the population of Lamiaceae group by Moraceae species in secondary T. grandis L. dominated community.展开更多
Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To un...Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.展开更多
This paper summarized the classification of colorful tree species and the application principles on landscape architecture and briefly introduced the present application situation of colorful tree species in China. It...This paper summarized the classification of colorful tree species and the application principles on landscape architecture and briefly introduced the present application situation of colorful tree species in China. It also raised suggestions related to the introduction and application of the colorful tree species.展开更多
This study chose dominant tree species including Picea crassifolia,Pinus armandii and Pinus tabuliformis which are distributed in Qilian Mountains,Xiaolongshan Mountains,and Bailongjiang River.According to the differe...This study chose dominant tree species including Picea crassifolia,Pinus armandii and Pinus tabuliformis which are distributed in Qilian Mountains,Xiaolongshan Mountains,and Bailongjiang River.According to the different tree species,ages and components,we sampled leaves,branches,stems,and roots,and measured the contents of Nitrogen,Phosphorus,Potassium,along with soil fertility.The changes of N,P,and K contents in the different tree species were studied,and the relationship between nutrient content and environmental factors was analyzed.The results indicated that the content of P in all three species was the lowest(0.039–0.28 g kg),while N content was the highest(0.095–1.72 g kg).As the terminal organ of nutrient transport,the nutrient content of leaves was the highest.P.armandii(0.45 g kg) had a higher nutrient concentration than P.tabulaeformis(0.19 g kg) and P.crassifolia(0.29 g kg).The nutrient content of each species was highest in a young forest,but lowest in a mature forest.The nutrient content of all three tree species was significantly affected by soil nutrient content,and negatively correlated with available soil nutrients.展开更多
A survey of 35 tree species (belonging to 28 genera in 19 families) in Aliyar, South India was carried out to ascertain their arbuscular mycorrhizal (AM) and dark septate endophyte (DSE) fungal status. All the t...A survey of 35 tree species (belonging to 28 genera in 19 families) in Aliyar, South India was carried out to ascertain their arbuscular mycorrhizal (AM) and dark septate endophyte (DSE) fungal status. All the tree species examined had AM association. AM and DSE coloni- zation is reported for the first time in 20 and 14 species respectively. Co- occurrence of AM and DSE was observed in 14 (40%) tree species. The extent of DSE colonization was inversely related to the extent of AM fungal colonization. Six tree species had Arum-type, 18 had intermediate- type and 11 had typical Paris-type AM morphology. AM fungal spore morphotypes belonging to 11 species in two genera were isolated from the rhizosphere soil. AM fungal spore numbers were not related to the ex- tent of AM colonization and Glomus dominated spore diversity. AM association individually and along with DSE were found respectively in the 63% and 44% of the economically important tree species. The occur- rence of AM and DSE fungal association in economically important indigenous tree species indicates the possibility of exploiting this asso- ciation in future conservation programmes of these species.展开更多
The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aer...The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.展开更多
We studied the regeneration of tree species in the sub-tropical forest of Alaknanda Valley in Garhwal Himalaya, India. The overall regeneration status was fairly good in the study area. Seedling density ranged between...We studied the regeneration of tree species in the sub-tropical forest of Alaknanda Valley in Garhwal Himalaya, India. The overall regeneration status was fairly good in the study area. Seedling density ranged between 520 and 1,240 seedlings per ha while the density of saplings varied between 400 and 800 saplings per ha. Out of eight sites studied, five sites, viz., A1, A2, B1, B2 and C2 contained the highest number of seedlings (280-480 per ha) and saplings ,(200-440 per ha) for Pinus roxburghfi and remaining three sites viz., C1, D1 and D2 represented the highest number of seedlings (240-400 per ha) and saplings (200-240 per ha) for Anogeissus latifolius. The DBH class distribution of the tree species revealed that the highest number of individuals was concentrated in the lower diameter classes while smallest numbers were found in the higher diameter classes. Species such as Acacia catechu, Anogeissus latifolius, Dalbergia sissoo, Engelhardtia spicata, Lannea coromandelica, Mallotus philippensis and Pinus roxburghii have the larg- est number of saplings and seedlings in the lower DBH classes, suggesting that they have good regeneration potential. Other spec es such as Aegle marmelos, Bauhinia variegata, Bombax ceiba, Cassia fistula, Erythrina variegata, Haldinia :cordifolia, Mangifera indica, Ougeinia oojeinensis, Phyllanthus emblica, Syzygium cumini, Terminalia alata and Toona hexandra have either no or very small number of saplings in the lower DBH classes which indicates that the status of these species implies poor regeneration.展开更多
We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sa...We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sampling were conducted in 3 sites of the hill range: Site 1 Pterocarpus dominated forest (PTF) (19°40'02.2'' N and 83°21'23.1'' E), Site 2 Mangifera dominated forest (MAF) (19°40'02.8'' N and 83°21'40.8'' E) and Site 3 Mixed forest (MIF) (19°36'47.1" N and 83°21'02.7'' E). A total of 28 families, 42 genera, 46 tree species, and 286 individual trees were recorded on an area of0.6 ha. Tree density varied between 470 and 49o individuals ha and average basal area between 3.16 and l0.04 m2 ha-1. Shannon Index (H') ranged from 2.34 to 4.53, Simpson's Index ranged from 0.07 to o.09, and equitability Index ranged from 0.7 to 1.34. The number of individuals was highest in the girth at breast height (GBH) class of 50-7o cm. The soil nutrient status of the three forest types was related to tree species diversity. The soil pH value of the three sites reflected the slightly acidic nature of the area. Species diversity was positively correlated with organic carbon and phosphorus and negatively with nitrogen, EC and pH. The results of the current study may be helpful to further develop a conservation planfor tree species in tropical sacred forest ecosystems.展开更多
文摘This study was carried out to assess the relationship of the status of nodulation(i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters(i.e., number of leaves, root and shoot lengths, root biomass and shoot biomass) in Albizia saman and Leucaena leucocephala. The assessment started 60 days after seeding. The study revealed that nodulation response and biomass production in both species showed significant differences over time(p < 0.05) in all variables except in the root-shoot ratio(oven-dry) of L. leucocephala. The study also showed significant differences(p < 0.05) in nodule formation and biomass production at the end of the study period between the two species except in the number of nodules and leaves and the green root-shoot ratio. There were strong positive correlations between nodule formation and biomass production, i.e., the number of nodules and the age of plants, the number of nodules and leaves, as well as the number of nodules and biomass(root biomass and shoot biomass) in both species. The results obtained using principal component analysis(PCA) and correlation coefficients of the different characteristics of nodulation and biomass production were similar in both species. The PCA showed that shoot biomass(shoot green weight and shoot oven-dry weight) is positively correlated with PC1(with an eigenvalue of 7.50) and root length is positively correlated with PC2(with an eigenvalue of 0.19) in the case of A. saman. In the case of L. leucocephala, the PCA revealed that root biomass(root green weight and root oven-dry weight), shoot biomass and shoot length are also positively correlated with PC1, while nodule formation and the number of leaves are positively correlated with PC2(with an eigenvalue PC1 of 6.92 and PC2 of 0.49).
基金supported by the National Natural Science Foundation of China(31930078,32301559)the Ministry of Science and Technology of China(2021YFD2200405,2021YFD2200402)+1 种基金Fundamental Research Funds of CAF(CAFYBB2021ZW001)the program for scientific research start-up funds of Guangdong Ocean University。
文摘Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.
基金the University grant Commission, Kathmandu Nepal for partial financial assistance (Sand T 23-2076/77)
文摘Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient in temperate hill forest,central Nepal.Data were collected from 300 sample plots within vertical elevation bands of 10,ranging from 1365 to 2450 m asl.A random sampling method was used for data collection in three seasons,winter,pre-monsoon and post monsoon seasons.Diameter at breast height(DBH)was used to broadly categorize the plant individual into trees,saplings and seedlings.The tree species richness ranged from 12 to 25 with density of 350 to 1200 individuals per hectare.Species richness of tree and sapling showed statistically significant unimodal pattern,which peaked at mid-elevation.Elevation showed a strong and positive linear correlation with the seedling density(Deviance=0.99,p<0.001)and a significant hump-shaped relationship with sapling density(Deviance=0.95,p<0.001).Similarly,elevations showed a statistically significant negative hump-shaped relationship with all trees,saplings and seedling stages(Deviances=0.89,0.87 and 0.57).The highest values of the Shannon-Wiener index and the lowest value of the Simpson index were found at mid-elevation for all growth forms.Nearly 92%of tree species were found at regenerating stage;49%in a good renewal regeneration status,32%in fair renewal regeneration,and 11%at a poor regenerating condition.Nevertheless,4%of tree species were reported as non-regenerating stages and 4%were newly introduced species.Hence,the regeneration status of the study area was considered fairly well since sapling(78.5%)>seedling(10.6%)≤mature(10.9%).Among tested environmental variables,elevation and annual mean rainfall were the most influential factors in the regeneration of tree species.
基金supported by the National Natural Science Foundation of China(32171765).
文摘Plant carbon(C)concentration is a fundamental trait for estimating C storage and nutrient utilization.However,the mechanisms of C concentration variations among different tree tissues and across species remains poorly understood.In this study,we explored the variations and determinants of C concentration of nine tissues from 216 individuals of 32 tree species,with particular attention on the effect of wood porosity(i.e.,non-porous wood,diffuse-porous wood,and ring-porous wood).The inter-tissue pattern of C concentration diverged across the three porosity types;metabolically active tissues(foliage and fine roots,except for the foliage of ring-porous species)generally had higher C levels compared with inactive wood.The poor inter-correlations between tissue C concentrations indicated a necessity of measuring tissue-and specific-C concentrations.Carbon concentration for almost all tissues generally decreased from non-porous,to diffuse-porous and to ring-porous.Tissue C was often positively correlated with tissue(foliage and wood)density and tree size,while negatively correlated with growth rate,depending on wood porosity.Our results highlight the mediating effect of type of wood porosity on the variation in tissue C among temperate species.The variations among tissues were more important than that among species.These findings provided insights on tissue C concentration variability of temperate forest species.
基金supported by National Natural Science Foundation of China (31972949)National Nonprofit Institute Research Grant of Chinese Academy of Forestry,China (CAFYBB2023MB006)。
文摘Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of interspecific competition and complementarity remain poorly understood.Taking into consideration strong-and weakspace competition(SC and WC),as well as N_(2)-fixing and non-N_(2)-fixing tree species(FN and nFN),a mixedspecies planting trial was conducted for Betula alnoides,a pioneer tree species,which was separately mixed with Acacia melanoxylon(SC+FN),Erythrophleum fordii(WC+FN),Eucalyptus cloeziana(SC+nFN)and Pinus kesiya var.langbianensis(WC+nFN)in southern China.Six years after planting,tree growth,total nitrogen(N)and carbon(C)contents,and the natural abundances of^(15)N and^(13)C in the leaves were measured for each species,and the mycorrhizal colonisation rates of B.alnoides were investigated under each treatment.Allometric variations and their relationships with space competition and nutrient-related factors were analyzed.The results showed a consistent effect of space competition on the height-diameter relationship of B.alnoides in mixtures with FN or nFN.The tree height growth of B.alnoides was significantly promoted under high space competition,and growth in diameter at breast height(DBH),tree height and crown size were all expedited in mixtures with FN.The symbiotic relationship between ectomycorrhizal fungi and B.alnoides was significantly influenced by both space competition and N_(2) fixation by the accompanying tree species,whereas such significant effects were absent for arbuscular mycorrhizal fungi.Furthermore,high space competition significantly decreased the water use efficiency(WUE)of B.alnoides,and its N use efficiency(NUE)was much lower in the FN mixtures.Structural equation modeling further demonstrated that the stem allometry of B.alnoides was affected by its NUE and WUE via changes in its height growth,and crown allometry was influenced by the mycorrhizal symbiotic relationship.Our findings provide new insights into the mechanisms driving tree allometric responses to above-and belowground resource competition and complementarity in mixed-species plantations,which are instructive for the establishment of mixed-species plantations.
文摘Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twigs and barks of 12 tree species in the mountain area of southwestern China have been tested and analyzed in the laboratory. The test and analysis indicate the results as follows:(1) for all the tree species, the fire resistance of leaves is much weaker than that of twigs and barks, and the broad leaves are stronger than those of conifers in fire resistance. (2) Heat value, moisture, ignition point and ash content are main indexes to affect fire resistance. Heat value relates to lignose content and benzene ethanol extractive content linearly.(3) Of all the 12 tree species, Schima superba,Castanopsis hystrix, Myrica rubra have the strongest resistance to fire; Machilus pauhoi, Michelia macclurei, Mytilaria laosensis, Camellia olifera and Manglietia tenuipes are relatively strong in fire resistance, and Lithocapus thalassica, Tsoongiodendron odorum, Cunninghamia lanceolata and Pinus massoniana are weak in fire resistance.
文摘The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pinus koraiensis Sieb. et Zucc. and Fraxinus rhynchophylla Hemsl. had spread rapidly towards west and east, respectively. The frontier form of species had close relation with its movement. The patch size of Pinus koraiensis , Populus davidiana Dode., Phellodendron amurense Rupr., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., Betula dahurica Pall., Picea koraiensis Nakai, Abies nephrolepis Maxim. and Larix olgeusis var. koreana Nakai decreased, however, Quercus mongolica Fisch., Betula costata Trautv., Acer mono Maxim., Tilia spp., Ulmus spp., Betula platyphylla Suk. and Fraxinus rhynchophylla increased. The frequency pattern of Populus davidiana , Betula platyphylla , Fraxinus rhynchophylla and Betula dahurica changed significantly. The dominance pattern of Populus davidiana , Tilia spp., Juglans mandshurica , Betula platyphylla , Betula dahurica and Abies nephrolepis changed significantly. The spatial correlation between Quercus mongolica and Betula dahurica , Betula costata and Picea spp., Betula costata and Abies nephrolepis , Picea spp. and Abies nephrolepis declined, however, the spatial correlation between Larix spp. and Betula platyphylla , Acer mono and Ulmus spp. increased.
文摘By analyzing the application situation of greening tree species in Liuzhou City,this study aimed to put forward several strategies and suggestions for garden tree species planning in Liuzhou City according to relevant theories and principles.
基金Supported by National Support Project Sub-project"Integration ofUrban Ecological Restoration Technology and Application Demonstration"(2007BAC28B04)Pre-planned Special Fund of 973(2008CB117008)Start Fund for"515"Talent Research Projects of Hainan Province~~
文摘[Objective] The aim was to study the growth and environment factors of three native tree species(Thespesia lampas,Calophyllum inophyllum and Hernandia sonora)in Hainan in coastal Casuarina equisetifolia plantation.[Method] The coastal sandy soil was treated by adding wood chips,bagasse and the control without adding anything in the plant pits.The growth of three native tree species planted for one year was analyzed.[Result] ① One year later,the survival rate showed an order of T.lampasH.sonoraC.inophyllum;the net increase of basal diameter showed an order of H.sonoraT.lampasC.inophyllum;while the net increase of plant height showed an order of T.lampasC.inophyllumH.sonora.The difference of survival rate between T.lampas and C.inophyllum was extremely significant,the difference of survival rate between H.sonora and C.inophyllum was significant,but the survival rate between T.lampas and H.sonora showed no significant difference.The difference on net growth of plant height among T.lampas,C.inophyllum and H.sonora was extremely significant,and the different on the net growth of basal diameter between T.lampas and C.inophyllum was significant.② Among different soil treatments,the survival rate of three native tree species in the treatment by adding wood chips,bagasse were higher than the treatment without adding anything,and the difference of survival rate of T.lampas between the treatment by adding wood chips,bagasse and the treatment without adding anything was extremely significant,but the treatment by adding wood chips and bagasse had not significant difference.③ The growth of three native tree species showed some correlation with environment factors(∣r∣0.3).The survival rate of T.lampas showed higher correlation with soil pH value and soil moisture,and the basal diameter and height of T.lampas showed some correlation with soil pH value and soil temperature.The survival rate of C.inophyllum showed higher correlation with soil pH value,soil temperature and light intensity,while the basal diameter and height of C.inophyllum showed some correlation with soil temperature.The survival rate of H.sonora showed higher correlation with soil salinity and soil temperature,while the basal diameter and height of H.sonora showed some correlation with soil temperature.The basal diameter and height of three native tree species had higher correlation(r0.5),which had reached a significant level.[Conclusion] In the one-year growth period in C.equisetifolia forest,the native tree species of T.lampas grew best and it was the most potential forest species mixed with C.equisetifolia.
基金Key Research Program of Guangdong Province (Grant No. 2002C20703) and Key Research Program of Guangdong Provincial Department ofForestry (Grant No. 2002-12)
文摘Twenty-five tree species indigenous to Guangdong Province were chosen in this study to portray their distribution patterns in relation to environmental factors. Both data of species distribution and environmental factors were tabulated based on a digitized map of Guangdong Province gridded at 0.5° latitude × 0.5° longitude. Grid-based diversity was mapped using DMAP, a distribution mapping program, and horizontal patterns were assessed using Kruskal-Wallis tests. The diversity center of the indige- nous tree species under study is located north of 23° N. These tree species exhibit significant latitudinal variation (P = 0.007 4), but no significant longitudinal difference (P = 0.052 2). Non-metric Multidimensional Scaling (NMS) identified five different ecological species groups, while Canonical Correspondence Analysis (CCA) showed the distribution of tree species along each of the five envi- ronmental gradients. An understanding of the environmental correlates of distribution patterns has great implication for the introduc- tion of the indigenous tree species for afforestation.
基金supported by a grant from the Fujian Provincial Natural Science Foundation(2014J01380)Study Abroad for Young Scholar of China Scholarship Council (201307870056)Youth Foundation of Fujian Agriculture and Forestry University (k13xjj08a)
文摘Abstract: Research on the ecological species groups and interspecific association of plant species are helpful to discover species coexistence processes and mechanisms, and to more fully understand plant community structure, function, and its taxonomy. However, little is known about the ecological species groups (ESG) and the interspecific association of dominant species in Daiyun Mountain National Nature Reserve of Fujian Province, China. Therefore, the main goal of this paper is to explore the ESG using maximal tree, and to analyze interspecific associations of 32 dominant species selected from lo2 sample plots using the chi-square test. The results show that: (1) 32 dominant species have a significant overall positive interspecific association, which indicates that the natural forest in Daiyun Mountain National Nature Reserve is stable, (a) The species pairs with weak associations, non-associations and positive associations account for lo.88%, 29.64% and 59.48% of the total 496 species pairs respectively, which suggests that the population distributions of the dominant species investigated are relatively independent, (3) The following species pairs may be useful for practical application, 〈Pinus taiwanensis, Rhododendron farrerae〉, 〈Castanopsis carlesii, Altingia chinensis〉, 〈C. carlesii, Castanopsis fargesii〉, 〈Castanopsis eyrei, C. fargesii〉, 〈P. taiwanensis, Fagus lucida〉 , 〈Machilus thunbergii, Castanopsis nigrescens〉, and (4) The results of clustering analysis based on the maximal tree method indicates that the 32 dominant species can be divided into 3 ESGs when A at o.6o, that is ESG I {Pinus massoniana, Cunning hamia lanceolata}, ESG II {P. taiwanensis, R. farrerae, Enkianthus quinqueflorus}, ESG III {C. carlesii, A. chinensis, C. eyrei, Castanopsis fabri, C. fargesii, Schima superba, Machilus thunbergii, Rhododendron latoueheae}. The results may be used for the selection of afforestation tree species in South China Forest Areas and guide the natural management of plantations.
基金supported in parts by the Biodiv ERs A project, “Green Future Forests” (#01LC1610B)the FORD project Biotip (#01LC1716D)promoted by the German Aerospace Center (DLR)+2 种基金the Federal Ministry of Education and Research, the project Sumforest – REFORM Risk Resilient Forest Management (#2816ERA02S)by the West Virginia University, and the USDA Mc Intire-Stennis Funds WVA00126the Bavarian State Ministry of Nutrition, Agriculture, and Forestry for permanent support of the project W 07 “Long-term experimental plots for forest growth and yield research” (#7831-22209-2013)
文摘Background: in recent studies, mixed forests were found to be more productive than monocultures with everything else remaining the same. Methods: To find out if this productivity is caused by tree species richness, by a more heterogeneous stand structure or both, we analyzed the effects of forest structure and tree species richness on stand productivity, based on inventory data of temperate forests in the United States of America and Germany. Results: Having accounted for effects such as tree size and stand density, we found that: (I) tree species richness increased stand productivity in both countries while the effect of tree size heterogeneity on productivity was negative in Germany but positive in the USA; (11) productivity was highest at sites with an intermediate amount of precipitation; and (111) growth limitations due water scarcity or low temperature may enhance structural heterogeneity. Conclusions: In the context of forest ecosystem goods and services, as well as future sustainable forest resource management, the associated implications would be:
基金supported by DBT Network Project (BT/PR7928/NDB/52/9/2006)Department of Biotechnology(DBT),Govt. of India
文摘Tree species diversity and population structure at different community types were described and analyzed for primary and secondary lowland moist deciduous forests in Tripura. Overall 10,957 individual trees belonging to 46 family, 103 genera and 144 species were counted at ≥30 cm DBH (diameter at breast height) using 28 permanent belt transects with a size of 1 ha (10 m × 1000 m). Four different tree communities were identified. The primary forests was dominated by Shorea robusta (mean density 464.77 trees.ha^-1, 105 species) and Schima wallichii (336.25 trees.ha^-1, 82 species), while the secondary forests was dominated by Tectona grandis (333.88 trees.ha^-1, 105 species) and Hevea brasiliensis (299.67 trees.ha^-1, 82 species). Overall mean basal area in this study was 18.01m2.ha^-1; the maximum value was recorded in primary Shorea forest (26.21 m2.ha^-1). Mean density and diversity indices were differed significantly within four different communities. No significant differences were observed in number of species, genera, family and tree basal cover area. Significant relationships were found between the species richness and different tree population groups across the communities. Results revealed that species diversity and density were increased in those forests due to past disturbances which resulted in slow accumu- lation of native oligarchic small tree species. Seventeen species were recorded with 〈2 individuals of which Saraca asoka (Roxb.) de Wilde and Entada phaseoloides (L.) Men'. etc. extensively used in local ethnomedicinal formulations. The present S. robusta Gaertn dominated forest was recorded richer (105 species) than other reported studies. Moraceae was found more speciose family instead of Papilionaceae and Euphorbiaceae than other Indian moist deciduous forests. Seasonal phenological gap in such moist deciduous forests influenced the population of Trachypithecus pileatus and capped langur. The analysis of FIV suggested a slow trend of shifting the population of Lamiaceae group by Moraceae species in secondary T. grandis L. dominated community.
基金supported by the National Natural Science Foundation of China(Grant No.31570466)the National Basic Research Program of China(Grant no.2012CB416905)
文摘Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.
文摘This paper summarized the classification of colorful tree species and the application principles on landscape architecture and briefly introduced the present application situation of colorful tree species in China. It also raised suggestions related to the introduction and application of the colorful tree species.
基金supported by the Special Fund for Forestry Scientific Research in the Public Interest(No.201204101-4)National Natural Science Foundation of China(No.31260141)CFERN and GENE Award Funds on Ecological Papers
文摘This study chose dominant tree species including Picea crassifolia,Pinus armandii and Pinus tabuliformis which are distributed in Qilian Mountains,Xiaolongshan Mountains,and Bailongjiang River.According to the different tree species,ages and components,we sampled leaves,branches,stems,and roots,and measured the contents of Nitrogen,Phosphorus,Potassium,along with soil fertility.The changes of N,P,and K contents in the different tree species were studied,and the relationship between nutrient content and environmental factors was analyzed.The results indicated that the content of P in all three species was the lowest(0.039–0.28 g kg),while N content was the highest(0.095–1.72 g kg).As the terminal organ of nutrient transport,the nutrient content of leaves was the highest.P.armandii(0.45 g kg) had a higher nutrient concentration than P.tabulaeformis(0.19 g kg) and P.crassifolia(0.29 g kg).The nutrient content of each species was highest in a young forest,but lowest in a mature forest.The nutrient content of all three tree species was significantly affected by soil nutrient content,and negatively correlated with available soil nutrients.
文摘A survey of 35 tree species (belonging to 28 genera in 19 families) in Aliyar, South India was carried out to ascertain their arbuscular mycorrhizal (AM) and dark septate endophyte (DSE) fungal status. All the tree species examined had AM association. AM and DSE coloni- zation is reported for the first time in 20 and 14 species respectively. Co- occurrence of AM and DSE was observed in 14 (40%) tree species. The extent of DSE colonization was inversely related to the extent of AM fungal colonization. Six tree species had Arum-type, 18 had intermediate- type and 11 had typical Paris-type AM morphology. AM fungal spore morphotypes belonging to 11 species in two genera were isolated from the rhizosphere soil. AM fungal spore numbers were not related to the ex- tent of AM colonization and Glomus dominated spore diversity. AM association individually and along with DSE were found respectively in the 63% and 44% of the economically important tree species. The occur- rence of AM and DSE fungal association in economically important indigenous tree species indicates the possibility of exploiting this asso- ciation in future conservation programmes of these species.
基金supported by Joint Fund of Natural Science Foundation of Zhejiang-Qingshanhu Science and Technology City(Grant No.LQY18C160002)National Natural Science Foundation of China(Grant No.U1809208)+1 种基金Zhejiang Science and Technology Key R&D Program Funded Project(Grant No.2018C02013)Natural Science Foundation of Zhejiang Province(Grant No.LQ20F020005).
文摘The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.
基金the Department of Science and Technology (SEED Division), Government of India, for providing financial support vide its Project No. SP/YO/022/2008
文摘We studied the regeneration of tree species in the sub-tropical forest of Alaknanda Valley in Garhwal Himalaya, India. The overall regeneration status was fairly good in the study area. Seedling density ranged between 520 and 1,240 seedlings per ha while the density of saplings varied between 400 and 800 saplings per ha. Out of eight sites studied, five sites, viz., A1, A2, B1, B2 and C2 contained the highest number of seedlings (280-480 per ha) and saplings ,(200-440 per ha) for Pinus roxburghfi and remaining three sites viz., C1, D1 and D2 represented the highest number of seedlings (240-400 per ha) and saplings (200-240 per ha) for Anogeissus latifolius. The DBH class distribution of the tree species revealed that the highest number of individuals was concentrated in the lower diameter classes while smallest numbers were found in the higher diameter classes. Species such as Acacia catechu, Anogeissus latifolius, Dalbergia sissoo, Engelhardtia spicata, Lannea coromandelica, Mallotus philippensis and Pinus roxburghii have the larg- est number of saplings and seedlings in the lower DBH classes, suggesting that they have good regeneration potential. Other spec es such as Aegle marmelos, Bauhinia variegata, Bombax ceiba, Cassia fistula, Erythrina variegata, Haldinia :cordifolia, Mangifera indica, Ougeinia oojeinensis, Phyllanthus emblica, Syzygium cumini, Terminalia alata and Toona hexandra have either no or very small number of saplings in the lower DBH classes which indicates that the status of these species implies poor regeneration.
文摘We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sampling were conducted in 3 sites of the hill range: Site 1 Pterocarpus dominated forest (PTF) (19°40'02.2'' N and 83°21'23.1'' E), Site 2 Mangifera dominated forest (MAF) (19°40'02.8'' N and 83°21'40.8'' E) and Site 3 Mixed forest (MIF) (19°36'47.1" N and 83°21'02.7'' E). A total of 28 families, 42 genera, 46 tree species, and 286 individual trees were recorded on an area of0.6 ha. Tree density varied between 470 and 49o individuals ha and average basal area between 3.16 and l0.04 m2 ha-1. Shannon Index (H') ranged from 2.34 to 4.53, Simpson's Index ranged from 0.07 to o.09, and equitability Index ranged from 0.7 to 1.34. The number of individuals was highest in the girth at breast height (GBH) class of 50-7o cm. The soil nutrient status of the three forest types was related to tree species diversity. The soil pH value of the three sites reflected the slightly acidic nature of the area. Species diversity was positively correlated with organic carbon and phosphorus and negatively with nitrogen, EC and pH. The results of the current study may be helpful to further develop a conservation planfor tree species in tropical sacred forest ecosystems.