The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour i...The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions展开更多
The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for c...The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for cyclic load was of trapezoidal shape with a hold time of 10s at the upper stress level. The TEM was employed to examine the deformation process in strengthened γ' matrix in dependence of γ' precipitate morphology. The fracture lifetime and cycle number up to fracture were the criteria to evaluate the additional cyclic component efFect on the course of deformation展开更多
Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of th...Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.展开更多
The aims of the present work are to evaluate the overaging behaviour of the investigated Cu-enriched alloy and to assess its mechanical behaviour,in terms of the tensile and fatigue strength,at room temperature and at...The aims of the present work are to evaluate the overaging behaviour of the investigated Cu-enriched alloy and to assess its mechanical behaviour,in terms of the tensile and fatigue strength,at room temperature and at 200℃,and to correlate the mechanical performance with its microstructure,in particular with the secondary dendrite arm spacing(SDAS).The mechanical tests carried out on the overaged alloy at 200℃ indicate that the addition of about 1.3 wt.%Cu to the A357 alloy enables to maintain ultimate tensile strength and yield strength values close to 210 and 200 MPa,respectively,and fatigue strength at about 100 MPa.Compared to the quaternary(Al−Si−Cu−Mg)alloy C355,the A357−Cu alloy has greater mechanical properties at room temperature and comparable mechanical behaviour in the overaged condition at 200℃.The microstructural analyses highlight that SDAS affects the mechanical behaviour of the peak-aged A357−Cu alloy at room temperature,while its influence is negligible on the tensile and fatigue properties of the overaged alloy at 200℃.展开更多
The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respective...The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respectively increased and reduced remarkably by hydrogen atoms. In addition, hydrogen atoms make the original stress amplitude of low cycle fatigue increase, which is because of the drag effect of hydrogen atoms on the moving dislocations. Analyses using electron microscopy show that hydrogen atoms accelerate crack initiation of low cycle fatigue from inclusion and transfer the source of low cycle fatigue crack from the surface of specimen to the inclusion, which results in the marked decrease of low cycle fatigue life. The increase of cyclic softening rate for hydrogen charged specimen is due to hydrogen atoms accelerating the initiating and growing of microvoids from the secondary phase particles in the steel. The reducing of the drag effect of hydrogen atoms on moving dislocations is also helpful to the increase of the cyclic softening rate.展开更多
AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigu...AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.展开更多
Inl this investigation the different tests were carried out on the butt joints of several kinds of steels to study the effects of weldmatching on the fracture initiation under statie and dynamic loading, on the fractu...Inl this investigation the different tests were carried out on the butt joints of several kinds of steels to study the effects of weldmatching on the fracture initiation under statie and dynamic loading, on the fracture propagating arresting properties, on the fatigue behavior and finally on the residual stress distribution, The testing results show that overmatching of metal increases the possibility of having a general yieleding and may help to enlarge the tolerate of weld defects for crack initiation under dynamic or static loading. In the propagating and arresting cases the beneficial effct of overmatching of weld metal was found .However non significant effect of the weldmatch mg on the propagation thresholds △Kth and da'dN was found.展开更多
Fatigue failures cost approximately 4% of the United States' gross domestic product(GDP). The design of highly fatigue-resistant materials is always in demand. Different from conventional strategies of alloy desig...Fatigue failures cost approximately 4% of the United States' gross domestic product(GDP). The design of highly fatigue-resistant materials is always in demand. Different from conventional strategies of alloy design, high-entropy alloys(HEAs) are defined as materials with five or more principal elements, which could be solid solutions. This locally-disordered structure is expected to lead to unique fatigue-resistant properties. In this review, the studies of the fatigue behavior of HEAs during the last five years are summarized. The four-point-bending high-cycle fatigue coupled with statistical modelling, and the fatigue-crack-growth behavior of HEAs, are reviewed. The effects of sample defects and nanotwins-deformation mechanisms on four-point-bending high-cycle fatigue of HEAs are discussed in detail. The influence of stress ratio and temperature on fatigue-crack-growth characteristics of HEAs is also discussed. HEAs could exhibit comparable or greater fatigue properties, relative to conventional materials. Finally,the possible future work regarding the fatigue behavior of HEAs is suggested.展开更多
Stress concentration factors(SCFs) for welded tubular joints can be decreased by filling the chord with concrete leading to a longer fatigue life. However, there are currently no design formula available in guidelines...Stress concentration factors(SCFs) for welded tubular joints can be decreased by filling the chord with concrete leading to a longer fatigue life. However, there are currently no design formula available in guidelines to predict the SCF of concrete-filled circular hollow section(CFCHS) K-joints, thus limiting their applicability in bridge design. To address this gap,finite element models for CFCHS K-joints were developed and compared against test results to ensure their accuracy. Then, a comprehensive parametric study was conducted to establish relationships between maximum SCFs and four variables: brace-to-chord diameter ratio(β), chord diameter-to-thickness ratio(2γ), brace-to-chord thickness ratio(τ), and the angle between braces and chord(θ). A total of 480 FE models were examined under three loading conditions including brace and chord loading: balanced axial force, chord axial force, and chord bending. Design equations to predict the maximum SCF for CFCHS Kjoints were established by multiple regression analyses of the numerical results. A comparison of maximum SCFs between circular hollow section(CHS) and CFCHS K-joints was made, and it was concluded that average reductions of 42% and 33% in maximum SCFs in CFCHS K-joints at the locations of the chord and brace were found compared to CHS joints for balanced axial force, respectively. Finally, a case study illustrating how to use the proposed equations for fatigue safety verification was presented.展开更多
文摘The effects of microstructure on the deformation and fracture behaviour of two-phase TiAl alloys were investjgated under monotonic and cyclical loading conditions, over a range of temperatu res.The tensile behaviour is analyzed for deformation temperatures between RT and 950℃, Fracture resistance behaviour and toughening mechanisms at RT and 800℃ are analyzed. and the inverse relationship botween ductility and toughness is explained using the crack initiation toughness. The preliminary results of load-controlled fatigue behaviour at 800℃ are interpreted using the tensile behaviour because deformation structure and fracture modes are similar under these two loading conditions
文摘The effect of different initial microstructures deftned by γ' precipitate morphology has been investigated at the creep/fatigue conditions of 900℃ and 500 MPa. The wave form of stress as a function of time for cyclic load was of trapezoidal shape with a hold time of 10s at the upper stress level. The TEM was employed to examine the deformation process in strengthened γ' matrix in dependence of γ' precipitate morphology. The fracture lifetime and cycle number up to fracture were the criteria to evaluate the additional cyclic component efFect on the course of deformation
基金Projects(51308363,11327801)supported by the National Natural Science Foundation of ChinaProject(2013-1792-9-4)supported by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(YJ201307)supported by the Start-up Research Fund for Introduced Talents of Sichuan University,China
文摘Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.
文摘The aims of the present work are to evaluate the overaging behaviour of the investigated Cu-enriched alloy and to assess its mechanical behaviour,in terms of the tensile and fatigue strength,at room temperature and at 200℃,and to correlate the mechanical performance with its microstructure,in particular with the secondary dendrite arm spacing(SDAS).The mechanical tests carried out on the overaged alloy at 200℃ indicate that the addition of about 1.3 wt.%Cu to the A357 alloy enables to maintain ultimate tensile strength and yield strength values close to 210 and 200 MPa,respectively,and fatigue strength at about 100 MPa.Compared to the quaternary(Al−Si−Cu−Mg)alloy C355,the A357−Cu alloy has greater mechanical properties at room temperature and comparable mechanical behaviour in the overaged condition at 200℃.The microstructural analyses highlight that SDAS affects the mechanical behaviour of the peak-aged A357−Cu alloy at room temperature,while its influence is negligible on the tensile and fatigue properties of the overaged alloy at 200℃.
文摘The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respectively increased and reduced remarkably by hydrogen atoms. In addition, hydrogen atoms make the original stress amplitude of low cycle fatigue increase, which is because of the drag effect of hydrogen atoms on the moving dislocations. Analyses using electron microscopy show that hydrogen atoms accelerate crack initiation of low cycle fatigue from inclusion and transfer the source of low cycle fatigue crack from the surface of specimen to the inclusion, which results in the marked decrease of low cycle fatigue life. The increase of cyclic softening rate for hydrogen charged specimen is due to hydrogen atoms accelerating the initiating and growing of microvoids from the secondary phase particles in the steel. The reducing of the drag effect of hydrogen atoms on moving dislocations is also helpful to the increase of the cyclic softening rate.
基金Project(51275343)supported by the National Natural Science Foundation of China
文摘AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.
文摘Inl this investigation the different tests were carried out on the butt joints of several kinds of steels to study the effects of weldmatching on the fracture initiation under statie and dynamic loading, on the fracture propagating arresting properties, on the fatigue behavior and finally on the residual stress distribution, The testing results show that overmatching of metal increases the possibility of having a general yieleding and may help to enlarge the tolerate of weld defects for crack initiation under dynamic or static loading. In the propagating and arresting cases the beneficial effct of overmatching of weld metal was found .However non significant effect of the weldmatch mg on the propagation thresholds △Kth and da'dN was found.
基金supported by the Department of Energy(DOE),Office of Fossil Energy,National Energy Technology Laboratory(Grant No.DE-FE-0024054,DE-FE-0011194)the U.S.Army Research Office Project(Grant No.W911NF-13-1-0438)+4 种基金the National Science Foundation(DMR-1611180)the QuesTek Innovation LLC(limited liability company)the Ministry of Science and Technology of Taiwan(Grant No.MOST105-2221-E-007-017-MY3)the Department of Materials Science and Engineering at the National Tsing Hua University(Taiwan)the School of Materials Science and Engineering of the Dalian University of Technology,China
文摘Fatigue failures cost approximately 4% of the United States' gross domestic product(GDP). The design of highly fatigue-resistant materials is always in demand. Different from conventional strategies of alloy design, high-entropy alloys(HEAs) are defined as materials with five or more principal elements, which could be solid solutions. This locally-disordered structure is expected to lead to unique fatigue-resistant properties. In this review, the studies of the fatigue behavior of HEAs during the last five years are summarized. The four-point-bending high-cycle fatigue coupled with statistical modelling, and the fatigue-crack-growth behavior of HEAs, are reviewed. The effects of sample defects and nanotwins-deformation mechanisms on four-point-bending high-cycle fatigue of HEAs are discussed in detail. The influence of stress ratio and temperature on fatigue-crack-growth characteristics of HEAs is also discussed. HEAs could exhibit comparable or greater fatigue properties, relative to conventional materials. Finally,the possible future work regarding the fatigue behavior of HEAs is suggested.
基金support has been provided by the National Natural Science Foundation of China(No.52478125)Overseas Students Science and Technology Activities Project Merit Funding in Shaanxi Province(2021-11)the Fundamental Research Funds for the Central Universities,CHD(No.300102213207).
文摘Stress concentration factors(SCFs) for welded tubular joints can be decreased by filling the chord with concrete leading to a longer fatigue life. However, there are currently no design formula available in guidelines to predict the SCF of concrete-filled circular hollow section(CFCHS) K-joints, thus limiting their applicability in bridge design. To address this gap,finite element models for CFCHS K-joints were developed and compared against test results to ensure their accuracy. Then, a comprehensive parametric study was conducted to establish relationships between maximum SCFs and four variables: brace-to-chord diameter ratio(β), chord diameter-to-thickness ratio(2γ), brace-to-chord thickness ratio(τ), and the angle between braces and chord(θ). A total of 480 FE models were examined under three loading conditions including brace and chord loading: balanced axial force, chord axial force, and chord bending. Design equations to predict the maximum SCF for CFCHS Kjoints were established by multiple regression analyses of the numerical results. A comparison of maximum SCFs between circular hollow section(CHS) and CFCHS K-joints was made, and it was concluded that average reductions of 42% and 33% in maximum SCFs in CFCHS K-joints at the locations of the chord and brace were found compared to CHS joints for balanced axial force, respectively. Finally, a case study illustrating how to use the proposed equations for fatigue safety verification was presented.