The relationships between fatigue threshold △Kth and the initial yield .strength σ0 of normalized 1035 steel after various prestrain (at fist, second and third hardening stages respectively) were investigated throug...The relationships between fatigue threshold △Kth and the initial yield .strength σ0 of normalized 1035 steel after various prestrain (at fist, second and third hardening stages respectively) were investigated through the analysis of theσ-εcurves and transmission electron microscope (TEM). After prestraining at first or second hardening stage, there is a marked drop in the values of △Kth and σ0. This is in correspondence with the depinning of the solute atoms from the dislocation lines in the Cottrell atmosphere.At the third hardening stage of prestrain the fatigue threshold increases rapidly and △Kth is even 1.6 times as large as the original value. This is because at this stage no dislocation-cell free areas can be found and the refinement of the dislocation cells occurs with the increase in the prestrain level.展开更多
To investigate the relation between material's cychc plastic behaviour and fatigue crack growth, a new model is proposed. The model incorporated the two intrinsic properties of material' s cyclic plastic and crack ...To investigate the relation between material's cychc plastic behaviour and fatigue crack growth, a new model is proposed. The model incorporated the two intrinsic properties of material' s cyclic plastic and crack tip' s deformation dislocation to interpret fatigue crack threshold. The relation between material' s cyclic hardening parameters (cyclic hardening amplitude and cyclic hardening rate) and fatigue threshold is studied. Fatigue threshold is determined based on the dislocation-free zone (DFZ) model, the theory of cohesive zone and the cyclic deformation behaviour. The results show that fatigue threshold increases with the decrease of the amplitude of cyclic hardening and is independent of cyclic hardening rate, but fatigue crack growth rate increases with the increase of cyclic hardening rate.展开更多
Large-module rack of the Three Gorges shiplift is manufactured by casting and machining, which is unable to avoid slag inclusions and surface cracks. To ensure its safety in the future service, studying on crack propa...Large-module rack of the Three Gorges shiplift is manufactured by casting and machining, which is unable to avoid slag inclusions and surface cracks. To ensure its safety in the future service, studying on crack propagation rule and the residual life estimation method of large-module rack is of great significance. The possible crack distribution forms of the rack in the Three Gorges shiplift were studied. By applying moving load on the model in FRANC3 D and ANSYS, quantitative analyses of interference effects on double cracks in both collinear and offset conditions were conducted. The variation rule of the stress intensity factor(SIF) influence factor, RK, of double collinear cracks changing with crack spacing ratio, RS, was researched. The horizontal and vertical crack spacing threshold of double cracks within the design life of the shiplift were obtained, which are 24 and 4 times as large as half of initial crack length, c0, respectively. The crack growth rates along the length and depth directions in the process of coalescence on double collinear cracks were also studied.展开更多
It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times ...It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.展开更多
This paper intensively explores the critical issues related to the quantitative and accurate evaluations of FCG behavior in the early stage,macro fatigue fracture toughness,and the critical crack size for damage toler...This paper intensively explores the critical issues related to the quantitative and accurate evaluations of FCG behavior in the early stage,macro fatigue fracture toughness,and the critical crack size for damage tolerance in nuclear graphite.To address these issues,scale-span FCG tests were carried out using two typical specimens,CT and SEM in-situ specimens.These results indicate that the FCG threshold and the effective FCG length have a significant correlation with the modified maximum loop stress theory for a mixed I/II mode.In particular,the effective FCG length(a_(eq))and the applied stress threshold of polycrystalline graphite are important parameters for fatigue damage tolerance design in engineering application.The influencing factors of ΔK_(th,eq) and a_(eq) were discussed in detail using the mixed I/II mode,respectively.In addition,the scattered values of ΔK_(IC) for this graphite can be quantitatively estimated using the Weibull distribution equation.The predicated parameters and experimental results demonstrate a strong correlation.展开更多
文摘The relationships between fatigue threshold △Kth and the initial yield .strength σ0 of normalized 1035 steel after various prestrain (at fist, second and third hardening stages respectively) were investigated through the analysis of theσ-εcurves and transmission electron microscope (TEM). After prestraining at first or second hardening stage, there is a marked drop in the values of △Kth and σ0. This is in correspondence with the depinning of the solute atoms from the dislocation lines in the Cottrell atmosphere.At the third hardening stage of prestrain the fatigue threshold increases rapidly and △Kth is even 1.6 times as large as the original value. This is because at this stage no dislocation-cell free areas can be found and the refinement of the dislocation cells occurs with the increase in the prestrain level.
基金Sponsored by the Fundamental Research Foundation of Harbin Engineering University(Grant No.HEUFT07007)
文摘To investigate the relation between material's cychc plastic behaviour and fatigue crack growth, a new model is proposed. The model incorporated the two intrinsic properties of material' s cyclic plastic and crack tip' s deformation dislocation to interpret fatigue crack threshold. The relation between material' s cyclic hardening parameters (cyclic hardening amplitude and cyclic hardening rate) and fatigue threshold is studied. Fatigue threshold is determined based on the dislocation-free zone (DFZ) model, the theory of cohesive zone and the cyclic deformation behaviour. The results show that fatigue threshold increases with the decrease of the amplitude of cyclic hardening and is independent of cyclic hardening rate, but fatigue crack growth rate increases with the increase of cyclic hardening rate.
基金Project(0722018)supported by the China Three Gorges CorporationProject(2012KJX01)supported by the Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance,China
文摘Large-module rack of the Three Gorges shiplift is manufactured by casting and machining, which is unable to avoid slag inclusions and surface cracks. To ensure its safety in the future service, studying on crack propagation rule and the residual life estimation method of large-module rack is of great significance. The possible crack distribution forms of the rack in the Three Gorges shiplift were studied. By applying moving load on the model in FRANC3 D and ANSYS, quantitative analyses of interference effects on double cracks in both collinear and offset conditions were conducted. The variation rule of the stress intensity factor(SIF) influence factor, RK, of double collinear cracks changing with crack spacing ratio, RS, was researched. The horizontal and vertical crack spacing threshold of double cracks within the design life of the shiplift were obtained, which are 24 and 4 times as large as half of initial crack length, c0, respectively. The crack growth rates along the length and depth directions in the process of coalescence on double collinear cracks were also studied.
文摘It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.
基金supported by the National S&T Major Project(Grant No.ZX06901)Additional funding was provided by the National Natural Science Foundation of China(Grant Nos.11572170 and 11872225).
文摘This paper intensively explores the critical issues related to the quantitative and accurate evaluations of FCG behavior in the early stage,macro fatigue fracture toughness,and the critical crack size for damage tolerance in nuclear graphite.To address these issues,scale-span FCG tests were carried out using two typical specimens,CT and SEM in-situ specimens.These results indicate that the FCG threshold and the effective FCG length have a significant correlation with the modified maximum loop stress theory for a mixed I/II mode.In particular,the effective FCG length(a_(eq))and the applied stress threshold of polycrystalline graphite are important parameters for fatigue damage tolerance design in engineering application.The influencing factors of ΔK_(th,eq) and a_(eq) were discussed in detail using the mixed I/II mode,respectively.In addition,the scattered values of ΔK_(IC) for this graphite can be quantitatively estimated using the Weibull distribution equation.The predicated parameters and experimental results demonstrate a strong correlation.