期刊文献+
共找到689篇文章
< 1 2 35 >
每页显示 20 50 100
A New Method for Rolling Element Bearing Fault Diagnosis Based on Cyclostationary Theory
1
作者 JIANG Ming, CHEN Jin, QIN Kai The State Key Laboratory of Vibration, Shock & Noise, Shanghai Jiaotong University, Shanghai 200030, P.R.China 《International Journal of Plant Engineering and Management》 2001年第3期136-142,共7页
The theory of cyclostationary and its application are very important for the analysis and processing of a non stationary signal. The paper introduces second order cyclostationary statistics, with emphass on discussi... The theory of cyclostationary and its application are very important for the analysis and processing of a non stationary signal. The paper introduces second order cyclostationary statistics, with emphass on discussion of cyclic periodogram arithmetic. Comparing the time smoothed cyclic periodogram with the frequency smoothed cyclic periodogram, we found that the former is more useful to extract the feature of cyclostationary signals. The method has been applied to analyze the vibration signal of a rolling element bearing measured on a test bench, and proved to be effective. Meanwhile, we have compared it with traditional power spectral density analysis, and the results prove that the time smoothed cyclic periodogram is more available to diagnose the fault of a rolling element bearing. 展开更多
关键词 fault diagnosis CYCLOSTATIONARY signal processing
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
2
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
3
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Causal temporal graph attention network for fault diagnosis of chemical processes
4
作者 Jiaojiao Luo Zhehao Jin +3 位作者 Heping Jin Qian Li Xu Ji Yiyang Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期20-32,共13页
Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches... Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability. 展开更多
关键词 Chemical processes Safety fault diagnosis Causal discovery Attention mechanism Explainability
下载PDF
Hierarchical multihead self-attention for time-series-based fault diagnosis
5
作者 Chengtian Wang Hongbo Shi +1 位作者 Bing Song Yang Tao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期104-117,共14页
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa... Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches. 展开更多
关键词 Self-attention mechanism Deep learning Chemical process Time-series fault diagnosis
下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system
6
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
下载PDF
Dynamic Vision-Based Machinery Fault Diagnosis With Cross-Modality Feature Alignment
7
作者 Xiang Li Shupeng Yu +2 位作者 Yaguo Lei Naipeng Li Bin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2068-2081,共14页
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In... Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis. 展开更多
关键词 Condition monitoring domain generalization eventbased camera fault diagnosis machine vision
下载PDF
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
8
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
Uncertainty-Aware Deep Learning: A Promising Tool for Trustworthy Fault Diagnosis
9
作者 Jiaxin Ren Jingcheng Wen +3 位作者 Zhibin Zhao Ruqiang Yan Xuefeng Chen Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1317-1330,共14页
Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack... Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind. 展开更多
关键词 Out-of-distribution detection traceability analysis trustworthy fault diagnosis uncertainty quantification.
下载PDF
Selective and Adaptive Incremental Transfer Learning with Multiple Datasets for Machine Fault Diagnosis
10
作者 Kwok Tai Chui Brij B.Gupta +1 位作者 Varsha Arya Miguel Torres-Ruiz 《Computers, Materials & Continua》 SCIE EI 2024年第1期1363-1379,共17页
The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation fo... The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains. 展开更多
关键词 Deep learning incremental learning machine fault diagnosis negative transfer transfer learning
下载PDF
Fault diagnosis method of link control system for gravitational wave detection
11
作者 GAO Ai XU Shengnan +2 位作者 ZHAO Zichen SHANG Haibin XU Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期922-931,共10页
To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Differen... To maintain the stability of the inter-satellite link for gravitational wave detection,an intelligent learning monitoring and fast warning method of the inter-satellite link control system failure is proposed.Different from the traditional fault diagnosis optimization algorithms,the fault intelligent learning method pro-posed in this paper is able to quickly identify the faults of inter-satellite link control system despite the existence of strong cou-pling nonlinearity.By constructing a two-layer learning network,the method enables efficient joint diagnosis of fault areas and fault parameters.The simulation results show that the average identification time of the system fault area and fault parameters is 0.27 s,and the fault diagnosis efficiency is improved by 99.8%compared with the traditional algorithm. 展开更多
关键词 large scale multi-satellite formation gravitational wave detection laser link monitoring fault diagnosis deep learning
下载PDF
The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network
12
作者 Jingting Mei Yang Yang +2 位作者 Zhipeng Gao Lanlan Rui Yijing Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期4883-4904,共22页
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ... Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks. 展开更多
关键词 Network fault diagnosis edge networks Izhikevich neurons PRUNING dynamic spike timing dependent plasticity learning
下载PDF
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
13
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 Time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
Machine Fault Diagnosis Using Audio Sensors Data and Explainable AI Techniques-LIME and SHAP
14
作者 Aniqua Nusrat Zereen Abir Das Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3463-3484,共22页
Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learni... Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learning models,especially those utilizing complex algorithms like deep learning,have demonstrated major potential in extracting important information fromlarge operational datasets.Despite their efficiency,machine learningmodels face challenges,making Explainable AI(XAI)crucial for improving their understandability and fine-tuning.The importance of feature contribution and selection using XAI in the diagnosis of machine faults is examined in this study.The technique is applied to evaluate different machine-learning algorithms.Extreme Gradient Boosting,Support Vector Machine,Gaussian Naive Bayes,and Random Forest classifiers are used alongside Logistic Regression(LR)as a baseline model because their efficacy and simplicity are evaluated thoroughly with empirical analysis.The XAI is used as a targeted feature selection technique to select among 29 features of the time and frequency domain.The XAI approach is lightweight,trained with only targeted features,and achieved similar results as the traditional approach.The accuracy without XAI on baseline LR is 79.57%,whereas the approach with XAI on LR is 80.28%. 展开更多
关键词 Explainable AI feature selection machine learning machine fault diagnosis
下载PDF
Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM
15
作者 Chunming Wu Shupeng Zheng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4395-4411,共17页
Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fa... Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios,a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network(MSCNN)and Long Short-Term Memory(LSTM)fused with attention mechanism is proposed.To adaptively extract the essential spatial feature information of various sizes,the model creates a multi-scale feature extraction module using the convolutional neural network(CNN)learning process.The learning capacity of LSTM for time information sequence is then used to extract the vibration signal’s temporal feature information.Two parallel large and small convolutional kernels teach the system spatial local features.LSTM gathers temporal global features to thoroughly and painstakingly mine the vibration signal’s characteristics,thus enhancing model generalization.Lastly,bearing fault diagnosis is accomplished by using the SoftMax classifier.The experiment outcomes demonstrate that the model can derive fault properties entirely from the initial vibration signal.It can retain good diagnostic accuracy under variable load and noise interference and has strong generalization compared to other fault diagnosis models. 展开更多
关键词 Bearing fault diagnosis convolutional neural network short-long-term memory network feature fusion
下载PDF
Fault Diagnosis for Buckling Friction Components in Wet Multi-Disc Clutches Using IHHT
16
作者 Yuqing Feng Changsong Zheng +2 位作者 Liang Yu Chengsi Wei Xiangjun Ouyang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期326-336,共11页
The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met... The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods. 展开更多
关键词 multi-disc clutch BUCKLING fault diagnosis Hilbert-Huang transform ENTROPY
下载PDF
Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine
17
作者 Chen Chen Zhongwei Xu +2 位作者 Meng Mei Kai Huang Siu Ming Lo 《Computers, Materials & Continua》 SCIE EI 2024年第6期4533-4549,共17页
Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitori... Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein.Unlike existing methods,this approach takes into account the spatial information of the time series monitoring data,aligning with the domain expertise of on-site manual monitoring.Besides,a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information.First,one-dimensional signal data is preprocessed and transformed into two-dimensional images.Afterward,the fusion feature tensor is created by utilizing the images of the three-phase current and employing the CANDE-COMP/PARAFAC(CP)decomposition method.Then,the tensor learning-based model is built using the extracted fusion feature tensor.The developed fault diagnosis scheme is valid with the field three-phase current dataset.The experiment indicates an enhanced performance of the developed fault diagnosis scheme over the current approach,particularly in terms of recall,precision,and F1-score. 展开更多
关键词 Railway switch machine tensor machine fault diagnosis
下载PDF
Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM
18
作者 Jiajie He Fuzheng Liu +3 位作者 Xiangyi Geng Xifeng Liang Faye Zhang Mingshun Jiang 《Structural Durability & Health Monitoring》 EI 2024年第1期37-54,共18页
Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and relia... Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and reliability.A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator(ESGMD-CC)and artificial fish swarm algorithm(AFSA)optimized extreme learning machine(ELM)is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis.Firstly,SGMD decomposes the raw vibration signal into multiple Symplectic geometry components(SGCs).Secondly,the iterations are reset by the cosine difference limitation to effectively separate the redundant components from the representative components.Additionally,the calculus operator is performed to strengthen weak fault features and make them easier to extract,and the singular value decomposition(SVD)weighted by power spectrum entropy(PSE)can be utilized as the sample feature representation.Finally,AFSA iteratively optimized ELM is adopted as the optimized classifier for fault identification.The superior performance of the proposed method has been validated by various experiments. 展开更多
关键词 Symplectic geometry mode decomposition calculus operator cosine difference limitation fault diagnosis AFSAELM model
下载PDF
Fault DiagnosisMethod of Energy Storage Unit of Circuit Breakers Based on EWT-ISSA-BP
19
作者 Tengfei Li Wenhui Zhang +3 位作者 Ke Mi Qingming Lin Shuangwei Zhao Jiayi Song 《Energy Engineering》 EI 2024年第7期1991-2007,共17页
Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Ba... Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB. 展开更多
关键词 Low voltage circuit breakers energy storage motor current sparrow search algorithm empirical wavelet transform fault diagnosis
下载PDF
Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering
20
作者 Xiangqun Li Jiawen Liang +4 位作者 Jinyu Zhu Shengping Shi Fangyu Ding Jianpeng Sun Bo Liu 《Energy Engineering》 EI 2024年第1期203-219,共17页
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ... To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models. 展开更多
关键词 Optical fibre fault diagnosis OTDR curve variational mode decomposition fuzzy entropy fuzzy clustering
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部