期刊文献+
共找到9,835篇文章
< 1 2 250 >
每页显示 20 50 100
Active Fault Tolerant Nonsingular Terminal Sliding Mode Control for Electromechanical System Based on Support Vector Machine
1
作者 Jian Hu Zhengyin Yang Jianyong Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期189-203,共15页
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no... Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers. 展开更多
关键词 Aeronautics electromechanical actuator fault tolerant control Support vector machine State observer Parametric uncertainty
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
2
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
3
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control Actuator faults Uncertain nonlinear system
下载PDF
Fault tolerant control of electric pitch control system based on single current detection
4
作者 李宏伟 付勃 +2 位作者 董海鹰 杨立霞 王睿敏 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第1期63-70,共8页
In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is sing... In view of the current sensors failure in electric pitch system,a variable universe fuzzy fault tolerant control method of electric pitch control system based on single current detection is proposed.When there is single or two-current sensor fault occurs,based on the proposed method the missing current information can be reconstructed by using direct current(DC)bus current sensor and the three-phase current can be updated in time within any two adjacent sampling periods,so as to ensure stability of the closed-loop system.And then the switchover and fault tolerant control of fault current sensor would be accomplished by fault diagnosis method based on adaptive threshold judgment.For the reconstructed signal error caused by the modulation method and the main control target of electric pitch system,a variable universe fuzzy control method is used in the speed loop,which can improve the anti-disturbance ability to load variation,and the robustness of fault tolerance system.The results show that the fault tolerant control method makes the variable pitch control system still has ideal control characteristics in case of sensor failure although part of the system performance is lost,thus the correctness of the proposed method is verified. 展开更多
关键词 electric pitch control fault tolerant control variable universe fuzzy control single current detection
下载PDF
A Novel Robust Attitude Control for Quadrotor Aircraft Subject to Actuator Faults and Wind Gusts 被引量:23
5
作者 Yuying Guo Bin Jiang Youmin Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期292-300,共9页
A novel robust fault tolerant controller is developed for the problem of attitude control of a quadrotor aircraft in the presence of actuator faults and wind gusts in this paper.Firstly, a dynamical system of the quad... A novel robust fault tolerant controller is developed for the problem of attitude control of a quadrotor aircraft in the presence of actuator faults and wind gusts in this paper.Firstly, a dynamical system of the quadrotor taking into account aerodynamical effects induced by lateral wind and actuator faults is considered using the Newton-Euler approach. Then,based on active disturbance rejection control(ADRC), the fault tolerant controller is proposed to recover faulty system and reject perturbations. The developed controller takes wind gusts,actuator faults and measurement noises as total perturbations which are estimated by improved extended state observer(ESO)and compensated by nonlinear feedback control law. So, the developed robust fault tolerant controller can successfully accomplish the tracking of the desired output values. Finally, some simulation studies are given to illustrate the effectiveness of fault recovery of the proposed scheme and also its ability to attenuate external disturbances that are introduced from environmental causes such as wind gusts and measurement noises. 展开更多
关键词 Active disturbance rejection control(ADRC) attitude control actuator faults disturbances rejection quadrotor aircraft
下载PDF
Sliding Mode Fault Tolerant Attitude Control Scheme for Spacecraft with Actuator Faults 被引量:5
6
作者 CAO Teng GONG Huajun HAN Bing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第1期119-127,共9页
An active fault tolerant control scheme is investigated for the attitude control systems of spacecraft with external disturbance and actuator faults by using the sliding mode technique. Firstly,the dynamic equations a... An active fault tolerant control scheme is investigated for the attitude control systems of spacecraft with external disturbance and actuator faults by using the sliding mode technique. Firstly,the dynamic equations and kinematic equations of spacecraft are given. For the dynamic mode of spacecraft in faulty case,a fault diagnosis component is used for fault detection and estimation by using a nonlinear observer. According to the fault estimation information obtained during the fault diagnosis,the fault tolerant control scheme is developed by adopting the backstepping sliding mode control technique. Meanwhile,the Lyapunov theory is used to analyze the stability of the closed-loop attitude systems. Finally,simulation results for the attitude dynamics models show the feasibility of the proposed fault tolerant scheme. 展开更多
关键词 fault TOLERANT control fault estimation actuator faults sliding mode control
下载PDF
Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults 被引量:13
7
作者 Ping LI Guanghong YANG 《控制理论与应用(英文版)》 EI 2009年第3期248-256,共9页
A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adap... A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback. The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place). It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero, though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown. Simulation results demonstrate the effectiveness of the control approach. 展开更多
关键词 Adaptive control Fuzzy system BACKSTEPPING Uncertain nonlinear system Actuator fault
下载PDF
Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults 被引量:9
8
作者 Fengying Zheng Ziyang Zhen Huajun Gong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期322-337,共16页
The paper presents the longitudinal control for the carrier-based unmanned aerial vehicle (UAV) system with unmeasured states, actuator faults, control input constraints, and external disturbances. By combining output... The paper presents the longitudinal control for the carrier-based unmanned aerial vehicle (UAV) system with unmeasured states, actuator faults, control input constraints, and external disturbances. By combining output state observer, adaptive fuzzy control, and constraint backstepping technology, a robust fault tolerant control approach is proposed. An output state observer with fuzzy logic systems is developed to estimate unmeasured states, and command filters rather than differentiations of virtual control law are used to solve the computational complexity problem in traditional backstepping. Additionally, a robust term is introduced to offset the fuzzy adaptive estimation error and external disturbance, and an appropriate fault controller structure with matching conditions obtained from fault compensation is proposed. Based on the Lyapunov theory, the designed control program is illustrated to guarantee that all the closed-loop signals of the given system are bounded, and the output errors converge to a small neighborhood of zero. A carrier-based UAV nonlinear longitudinal model is employed to testify the feasibility and validity of the control scheme. The simulation results show that all the controllers can perform at a satisfactory level of reference tracking despite the existence of unknown aerodynamic parameters and actuator faults. © 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Actuators Aircraft control BACKSTEPPING control system analysis control theory controllers Error compensation fault tolerance Flight control systems Fuzzy control Fuzzy filters Fuzzy logic State estimation Three term control systems Unmanned aerial vehicles (UAV)
下载PDF
Finite-time Adaptive Fault-tolerant Control for Nonlinear Systems With Multiple Faults 被引量:7
9
作者 Huanqing Wang Wen Bai Peter Xiaoping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1417-1427,共11页
This paper focuses on the problem of adaptive finitetime fault-tolerant control for a class of non-lower-triangular nonlinear systems.The faults encountered in the control system include the actuator faults and the ab... This paper focuses on the problem of adaptive finitetime fault-tolerant control for a class of non-lower-triangular nonlinear systems.The faults encountered in the control system include the actuator faults and the abrupt system fault.By applying backstepping design and neural networks approximation,an adaptive finite-time fault-tolerant control scheme is developed.It is shown that the proposed controller ensures that all signals in the closed-loop system are semi-globally practically finite-time stable and the track-ing error converges to a small neighborhood around the origin within finite time.The simulation is carried out to explain the validity of the developed strategy. 展开更多
关键词 Adaptive control BACKSTEPPING faultS FINITE TIME
下载PDF
Rule-based Fault Diagnosis of Hall Sensors and Fault-tolerant Control of PMSM 被引量:12
10
作者 SONG Ziyou LI Jianqiu +3 位作者 OUYANG Minggao GU Jing FENG Xuning LU Dongbin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期813-822,共10页
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault... Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM. 展开更多
关键词 electric vehicle permanent-magnet synchronous motor(PMSM) Hall sensors rule-based fault diagnosis fault-tolerant control
下载PDF
Backstepping-based active fault-tolerant control for a class of uncertain SISO nonlinear systems 被引量:6
11
作者 Meng Lingya Jiang Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1263-1270,共8页
Active fault-tolerant control is investigated for a class of uncertain SISO nonlinear flight control systems based on the adaptive observer, feedback linearization and backstepping theory.Firstly an adaptive observer ... Active fault-tolerant control is investigated for a class of uncertain SISO nonlinear flight control systems based on the adaptive observer, feedback linearization and backstepping theory.Firstly an adaptive observer is constructed to estimate the fault in the faulty system.A new fault updating law is presented to simplify the assumption conditions of the adaptive observer.The asymptotical stability of the observer and the uniform ultimate boundedness of the fault estimation error are guaranteed by Lyapunov theorem.Then a backstepping-based active fault-tolerant controller is designed for the faulty system.The asymptotical stability of the closed-loop system and uniform ultimate boundedness of the tracking error are proved based on Lyapunov theorem.The effectiveness of the proposed scheme is demonstrated through the numerical simulation of a flight control system. 展开更多
关键词 fault-tolerant control fault diagnosis NONLINEAR BACKSTEPPING adaptive observer flight control.
下载PDF
Output feedback based adaptive robust fault-tolerant control for a class of uncertain nonlinear systems 被引量:6
12
作者 Shreekant Gayaka Bin Yao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期38-51,共14页
An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are unde... An adaptive robust approach for actuator fault-tolerant control of a class of uncertain nonlinear systems is proposed.The two chief ways in which the system performance can degrade following an actuator-fault are undesirable transients and unacceptably large steady-state tracking errors.Adaptive control based schemes can achieve good final tracking accuracy in spite of change in system parameters following an actuator fault,and robust control based designs can achieve guaranteed transient response.However,neither adaptive control nor robust control based fault-tolerant designs can address both the issues associated with actuator faults.In the present work,an adaptive robust fault-tolerant control scheme is claimed to solve both the problems,as it seamlessly integrates adaptive and robust control design techniques.Comparative simulation studies are performed using a nonlinear hypersonic aircraft model to show the effectiveness of the proposed scheme over a robust adaptive control based faulttolerant scheme. 展开更多
关键词 fault-tolerant system actuator fault adaptive control robust control.
下载PDF
Novel robust fault diagnosis method for flight control systems 被引量:10
13
作者 Guo Yuying Jiang Bin +1 位作者 Zhang Youmin Wang dianfei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1017-1023,共7页
A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model... A novel robust fault diagnosis scheme, which possesses fault estimate capability as well as fault diagnosis property, is proposed. The scheme is developed based on a suitable combination of the adaptive multiple model (AMM) and unknown input observer (UIO). The main idea of the proposed scheme stems from the fact that the actuator Lock-in-Place fault is unknown (when and where the actuator gets locked are unknown), and multiple models are used to describe different fault scenarios, then a bank of unknown input observers are designed to implement the disturbance de-coupling. According to Lyapunov theory, proof of the robustness of the newly developed scheme in the presence of faults and disturbances is derived. Numerical simulation results on an aircraft example show satisfactory performance of the proposed algorithm. 展开更多
关键词 fault diagnosis adaptive multiple model unknown input observer flight control.
下载PDF
Fault Tolerant Control for Networked Control Systems with Packet Loss and Time Delay 被引量:5
14
作者 Ming-Yue Zhao He-Ping Liu +1 位作者 Zhi-Jun Li De-Hui Sun 《International Journal of Automation and computing》 EI 2011年第2期244-253,共10页
In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system ... In this paper,a fault tolerant control with the consideration of actuator fault for a networked control system (NCS) with packet loss is addressed.The NCS with data packet loss can be described as a switched system model.Packet loss dependent Lyapunov function is used and a fault tolerant controller is proposed respectively for arbitrary packet loss process and Markovian packet loss process.Considering a controlled plant with external energy-bounded disturbance,a robust H ∞ fault tolerant controller is designed for the NCS.These results are also expanded to the NCS with packet loss and networked-induced delay.Numerical examples are given to illustrate the effectiveness of the proposed design method. 展开更多
关键词 fault tolerant control networked control system (NCS) packet loss actuator fault time delay.
下载PDF
Consensus Control of Multi-Agent Systems Using Fault-Estimation-in-the-Loop:Dynamic Event-Triggered Case 被引量:21
15
作者 Yamei Ju Derui Ding +2 位作者 Xiao He Qing-Long Han Guoliang Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第8期1440-1451,共12页
The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variabl... The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework. 展开更多
关键词 Consensus control dynamic event-triggered protocol(DETP) fault compensation(FC) fault estimation multi-agent systems(MASs)
下载PDF
Fault tolerant control based on stochastic distribution via RBF neural networks 被引量:9
16
作者 Zakwan Skaf Hong Wang Lei Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期63-69,共7页
A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measure... A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained. 展开更多
关键词 probability density function(PDF) nonlinear stochastic system fault tolerant control(FTC).
下载PDF
Adaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters 被引量:4
17
作者 Rong-Hua Lei Li Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期964-971,共8页
Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co... Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme. 展开更多
关键词 Space robot Actuator faults Uncertain parameters Effectiveness factor fault-tolerant control
下载PDF
Adaptive sliding mode backstepping control for near space vehicles considering engine faults 被引量:5
18
作者 ZHAO Jing JIANG Bin +2 位作者 XIE Fei GAO Zhifeng XU Yufei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期343-351,共9页
A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin... A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance. 展开更多
关键词 fault tolerant control adaptive sliding mode(ASM) engine fault near space vehicle(NSV)
下载PDF
Fault detection for nonlinear networked control systems based on fuzzy observer 被引量:6
19
作者 Zhangqing Zhu Xiaocheng Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期129-136,共8页
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont... Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective. 展开更多
关键词 nonlinear networked control system (NNCS) fault detection T-S fuzzy model state observer time-delay.
下载PDF
Kalman filter based fault diagnosis of networked control system with white noise 被引量:5
20
作者 YanweiWANG YingZHENG 《控制理论与应用(英文版)》 EI 2005年第1期55-59,共5页
The networked control system NCS is regarded as a sampled control system withoutput time-variant delay. White noise is considered in the model construction of NCS. By using theKalman filter theory to compute the filte... The networked control system NCS is regarded as a sampled control system withoutput time-variant delay. White noise is considered in the model construction of NCS. By using theKalman filter theory to compute the filter parameters, a Kalman filter is constructed for this NCS.By comparing the output of the filter and the practical system, a residual is generated to diagnoseme sensor faults and the actuator faults. Finally, an example is given to show the feasibility ofthe approach. 展开更多
关键词 networked control system fault diagnosis kalman filter
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部