Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot...Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.展开更多
Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot...Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.展开更多
To investigate the recurrence behaviors of segment-rupturing eathquakes on active faults of the Chinese mainland, thispaper analyzes quantitatively earthquake history of 19 fault segments based on earthquake dam of mu...To investigate the recurrence behaviors of segment-rupturing eathquakes on active faults of the Chinese mainland, thispaper analyzes quantitatively earthquake history of 19 fault segments based on earthquake dam of multi-cyclerecurrences. The result shows that, for these fault segments, eanhquake recurring at previous locations is mainlycharacterized by both quasi-periodic (in a ratio of about) and time-predictable (in a ratio of about) behaviors.For the first behavior. intrinsic uncertainty of recurrence interval accounts for 0. 15-0.40 of the average interval, andmagnitudes of event vary from cycle to cycle within the range of the mean magnitUde t0.5. For the second behavior,intrinsic uncertainty of recurrence interval ranges mostly from 0. 19 to 0.40 of the average interval, and for successivetwo cycles the maximum change of event magnitudes is as much as 1.7 magnitude-units. In addition, for a few casesthe first behavior coexists along with either the second or the slip-predictable behaviors.展开更多
We discuss the influence of precipitation and groundwater on the deformation behavior of the Babaoshan fault of Beijing by using long-term observation data from Dahuichang station during 1970-2003. The results show th...We discuss the influence of precipitation and groundwater on the deformation behavior of the Babaoshan fault of Beijing by using long-term observation data from Dahuichang station during 1970-2003. The results show that a) the pore pressure on fault zone as well as the fault deformation behavior exhibited periodically variation as precipitation changed steadily and periodically; b) the periodicity of the pore pressure of fault zones disappeared and the manner of fault deformation behavior changed when precipitation was small and/or was in aberrance. This implies that rainfall plays a key role in fault deformation behavior through changing the pore pressure of fault zones. Combining the existing results about the Babaoshan fault, it is concluded that precipitation and groundwater may adjust the stress/strain field by controlling the deformation behavior of the fault, which can provide direct observation evidence for the interaction of fluid and solid in shallow crust of the Earth.展开更多
The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-...The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies.展开更多
The fault system of Liaodong Bay developed extensively under the control of the Tanlu Fault. The fault system can be grouped into strike-slip faults of grade Ⅰ, trunk faults of grade Ⅱand branch faults (induced fau...The fault system of Liaodong Bay developed extensively under the control of the Tanlu Fault. The fault system can be grouped into strike-slip faults of grade Ⅰ, trunk faults of grade Ⅱand branch faults (induced faults) of grade Ⅲ respectively based on its developmental scale. The faults of grade Ⅰ and Ⅱwere deep, early and large while the faults of grade Ⅲwere shallow, late and small. The formation, evolution and distribution features played a significant role in controlling the migration of oil and gas in both horizontal and vertical directions. The fluid transfer in the fault system occurred in the process of faulting. The strike-slip and trunk faults moved actively forming predominant pathways for oil and gas migration. The branch faults, with weak activity, generally controlled the development of traps and were beneficial for the accumulation and preservation of oil and gas. The faults of grade Ⅰ and Ⅱ formed the major migration pathways for oil and gas, but their fault activity rates appeared to vary along their strikes. The zones with a relatively low fault activity rate might be favorable for oil and gas accumulation. When the activities of strike-slip, trunk, and branch faults came to a halt, the fault seal behavior had a vitally important effect on the accumulation of oil and gas. The controlling role of the fault over fluid distribution was further analyzed by calculating the fault activity quantitatively.展开更多
Based on the earthquake data of 11 active intraplate fault zones of the Chinese mainland, we have studied the earthquake recurrence behaviors on entire active fault zones and their relations to those on individual fau...Based on the earthquake data of 11 active intraplate fault zones of the Chinese mainland, we have studied the earthquake recurrence behaviors on entire active fault zones and their relations to those on individual fault-segments. The results show that the earthquake recurrence on entire active fault zones, each of them is made up of multiple segments, displays three types of behavior, i.e., the clustering behavior, the random behavior, and the poor quasi-periodic behavior. The major one is the sparse clustering behavior, its recurrence process often exhibits that clusters (active periods) and gaps (quiescent periods) occur alternatively in varying degrees. The recurrence intervals within and between clusters, the durations of individual clusters, the earthquake number and strength of every cluster are all variable. The recurrence process is non-linear, there is neither the strength-time dependence nor the time-strength dependence. However, the earthquake recurrence processes on individual fault-segments are much more simple, and mainly display either the quasi-periodic or the time-predictable behaviors. Also, this study further discovers that the temporal clustering in earthquake recurrence process on entire fault zones is mainly caused by the rupture 'contagion' on different fault-segments within relatively short periods of time. Along active fault zones, the degree and orientation of rupture 'contagion' may vary with different seismic cycles, and the 'contagion' seems to be able to jump over unbroken 'gaps' on the fault zones.展开更多
基金Chinese Joint Seismological Science Foundation (102002).
文摘Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.
基金Chinese Joint Seismological Science Foundation (102002).
文摘Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.
文摘To investigate the recurrence behaviors of segment-rupturing eathquakes on active faults of the Chinese mainland, thispaper analyzes quantitatively earthquake history of 19 fault segments based on earthquake dam of multi-cyclerecurrences. The result shows that, for these fault segments, eanhquake recurring at previous locations is mainlycharacterized by both quasi-periodic (in a ratio of about) and time-predictable (in a ratio of about) behaviors.For the first behavior. intrinsic uncertainty of recurrence interval accounts for 0. 15-0.40 of the average interval, andmagnitudes of event vary from cycle to cycle within the range of the mean magnitUde t0.5. For the second behavior,intrinsic uncertainty of recurrence interval ranges mostly from 0. 19 to 0.40 of the average interval, and for successivetwo cycles the maximum change of event magnitudes is as much as 1.7 magnitude-units. In addition, for a few casesthe first behavior coexists along with either the second or the slip-predictable behaviors.
基金National Natural Science Foundation of China (40374019)Joint Earthquake Science Foundation of China (1040106).
文摘We discuss the influence of precipitation and groundwater on the deformation behavior of the Babaoshan fault of Beijing by using long-term observation data from Dahuichang station during 1970-2003. The results show that a) the pore pressure on fault zone as well as the fault deformation behavior exhibited periodically variation as precipitation changed steadily and periodically; b) the periodicity of the pore pressure of fault zones disappeared and the manner of fault deformation behavior changed when precipitation was small and/or was in aberrance. This implies that rainfall plays a key role in fault deformation behavior through changing the pore pressure of fault zones. Combining the existing results about the Babaoshan fault, it is concluded that precipitation and groundwater may adjust the stress/strain field by controlling the deformation behavior of the fault, which can provide direct observation evidence for the interaction of fluid and solid in shallow crust of the Earth.
基金Project(50807002) supported by the National Natural Science Foundation of ChinaProject(SKLD10KM05) supported by Opening Fund of State Key Laboratory of Power System and Generation EquipmentsProject(201206025007) supported by the National Scholarship Fund,China
文摘The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies.
文摘The fault system of Liaodong Bay developed extensively under the control of the Tanlu Fault. The fault system can be grouped into strike-slip faults of grade Ⅰ, trunk faults of grade Ⅱand branch faults (induced faults) of grade Ⅲ respectively based on its developmental scale. The faults of grade Ⅰ and Ⅱwere deep, early and large while the faults of grade Ⅲwere shallow, late and small. The formation, evolution and distribution features played a significant role in controlling the migration of oil and gas in both horizontal and vertical directions. The fluid transfer in the fault system occurred in the process of faulting. The strike-slip and trunk faults moved actively forming predominant pathways for oil and gas migration. The branch faults, with weak activity, generally controlled the development of traps and were beneficial for the accumulation and preservation of oil and gas. The faults of grade Ⅰ and Ⅱ formed the major migration pathways for oil and gas, but their fault activity rates appeared to vary along their strikes. The zones with a relatively low fault activity rate might be favorable for oil and gas accumulation. When the activities of strike-slip, trunk, and branch faults came to a halt, the fault seal behavior had a vitally important effect on the accumulation of oil and gas. The controlling role of the fault over fluid distribution was further analyzed by calculating the fault activity quantitatively.
基金Chinese Joint Seismological Science Foundation !(95-07-423).
文摘Based on the earthquake data of 11 active intraplate fault zones of the Chinese mainland, we have studied the earthquake recurrence behaviors on entire active fault zones and their relations to those on individual fault-segments. The results show that the earthquake recurrence on entire active fault zones, each of them is made up of multiple segments, displays three types of behavior, i.e., the clustering behavior, the random behavior, and the poor quasi-periodic behavior. The major one is the sparse clustering behavior, its recurrence process often exhibits that clusters (active periods) and gaps (quiescent periods) occur alternatively in varying degrees. The recurrence intervals within and between clusters, the durations of individual clusters, the earthquake number and strength of every cluster are all variable. The recurrence process is non-linear, there is neither the strength-time dependence nor the time-strength dependence. However, the earthquake recurrence processes on individual fault-segments are much more simple, and mainly display either the quasi-periodic or the time-predictable behaviors. Also, this study further discovers that the temporal clustering in earthquake recurrence process on entire fault zones is mainly caused by the rupture 'contagion' on different fault-segments within relatively short periods of time. Along active fault zones, the degree and orientation of rupture 'contagion' may vary with different seismic cycles, and the 'contagion' seems to be able to jump over unbroken 'gaps' on the fault zones.
基金funded by the National Science and Technology Major Project,China(Nos.2017VI-0002-0072,2019-VI-0020-0135)the National Natural Science Foundation of China(Nos.51771148,52071263)+4 种基金the Key Research and Development Program of Shaanxi Province,China(No.2020ZDLGY13-02)the Natural Science Basic Research Plan in Shaanxi Province,China(No.2021JC-13)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2021-QZ-03)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2021057)the Science,Technology,and Innovation Commission of Shenzhen Municipality,China(No.JCYJ20180306171121424)。