The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to ...This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.展开更多
Taking the attitude control system of micro quad-rotor as a research object, a design scheme of fault estimator based on generalized Kalman-Yakubovic-Popov (GKYP) lemma is put forward to deal with the problem of est...Taking the attitude control system of micro quad-rotor as a research object, a design scheme of fault estimator based on generalized Kalman-Yakubovic-Popov (GKYP) lemma is put forward to deal with the problem of estimating multiple actuators malfunctions with couplings. Using an H_index and an appropriate algorithm, the goal of weakening the coupling can be achieved by limiting the fault frequency to a certain range, then different kinds of actuator faults can be estimated correctly. The simulations demonstrate the reliability and validity of the proposed method.展开更多
This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinat...This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variabl...The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.展开更多
This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias princ...This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias principle, a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model; then, a novel TSEKF is suggested such that it can simultane- ously estimate satellite attitude information and actuator faults no matter they are additive or mul- tiplicative; finally, the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs, and simulation results demonstrate the effec- tiveness of the proposed fault estimation approach.展开更多
In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performance...In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performances of rapidly-varying faults estimation. Only original system matrices are adopted in the parameter design. The considered faults can be unbounded, and the proposed augmented observer can estimate a large class of faults. Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered, followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded. For the considered nonlinear system, convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method. Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system. The mance in estimating states and actuator faults. It also successfully. simulation results show satisfactory perfor- shows that multiple faults can be estimated展开更多
The article focuses on the design and application of an active reconfigurable controller that mitigates the effects of gust load and actuator faults on a flexible aircraft.A novel integrated adaptive output feedback s...The article focuses on the design and application of an active reconfigurable controller that mitigates the effects of gust load and actuator faults on a flexible aircraft.A novel integrated adaptive output feedback scheme is investigated to address the actuator faults.The real-time fault values provided by the fault estimation module are considered in the reconfigurable control law to improve the fault-tolerant capability.The estimate values of faults and control gains are calculated by analyzing the stability of the overall system.The proposed controller is simulated using a flexible aircraft model with a discrete‘1-cosine’gust,and the results show that it can effectively mitigate the wing root moments and recover the flight maneuver stability after the aircraft suffered from gusts.展开更多
Aiming at a class of nonlinear systems that contains faults, a novel iterative learning scheme is applied to fault detec- tion, and a novel algorithm of fault detection and estimation is proposed. This algorithm first...Aiming at a class of nonlinear systems that contains faults, a novel iterative learning scheme is applied to fault detec- tion, and a novel algorithm of fault detection and estimation is proposed. This algorithm first constructs residual signals by the output of the practical system and the output of the designed fault tracking estimator, and then uses the residuals and the difference- value signal of the adjacent two residuals to gradually revise the introduced virtual faults, which can cause the virtual faults to close to the practical faults in systems, thereby achieving the goal of fault detection for systems. This algorithm not only makes full use of the existing valid information of systems and has a faster tracking con- vergent speed than the proportional-type (P-type) algorithm, but also calculates more simply than the proportional-derivative-type (PD-type) algorithm and avoids the unstable effects of differential operations in the system. The final simulation results prove the validity of the proposed algorithm.展开更多
This paper investigates the problems of wind and actuator fault estimation for a quadrotor unmanned aerial vehicle(UAV).To e®ectively assess the safety and reliability of a quadrotor UAV in the presence of unknow...This paper investigates the problems of wind and actuator fault estimation for a quadrotor unmanned aerial vehicle(UAV).To e®ectively assess the safety and reliability of a quadrotor UAV in the presence of unknown wind disturbances,a two-stage particle filter(TSPF)scheme is proposed to obtain the simultaneous estimation of winds and actuator faults that may degrade the performance of the vehicle.In this scheme,the first-stage particle filter is used to estimate the states of the quadrotor UAV,and the second-stage particle filter is designed to produce estimates of unknown parameters,including the wind disturbances and actuator faults.To mitigate the degeneracy and impoverishment issues,the second-stage particle filter admits a parallel implementation of increased particle samplings for the wind and actuator fault estimation.Finally,simulation results are presented to demonstrate the e®ectiveness of the proposed scheme.展开更多
A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used i...A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used in a procedure that provides the automatic determination of faulted types and phases, rather than requires engineer to specify them. The loop and nodal equations comparing the faulted phase to non-fauhed phases of multi-parallel lines are introduced in the fauh location estimation models, in which source impedance of remote end is not involved. Precise algorithms of locating fault are derived. The effect of load flow and fauh resistance, on the location accuracy, are effectively eliminated. The algorithms are demonstrated by digital computer simulations.展开更多
To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary stat...To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.展开更多
In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm i...In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited technology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algorithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for discrete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm.展开更多
A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by u...A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.展开更多
In this paper, an actuator fault diagnosis scheme based on the backstepping method is proposed for a class of nonlinear heat equations. The fault diagnosis scheme includes fault detection, fault estimation and time to...In this paper, an actuator fault diagnosis scheme based on the backstepping method is proposed for a class of nonlinear heat equations. The fault diagnosis scheme includes fault detection, fault estimation and time to failure (TTF) prediction. Firstly, we achieve fault detection by comparing the detection residual with a predetermined threshold, where the detection residual is defined as the difference between the observer output and the system measurement output. Then, we estimate the fault function through the fault parameter update law and calculate the TTF using only limited measurements. Finally, the numerical simulation is performed on a nonlinear heat equation to verify the effectiveness of the proposed fault diagnosis scheme.展开更多
Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm i...Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm is only suitable for single fault detection, single GNSS constellation. However, multiple satellite failure should be considered when more than one satellite navigation system are adopted. To detect and exclude multi-fault, most current algorithms perform an iteration procedure considering all possible fault model which lead to heavy computation burden. An alternative RAIM is presented in this paper based on multiple satellite constellations(for example, GPS and Bei Dou(BDS) etc.) and robust estimation for multi-fault detection and exclusion, which can not only detect multi-failures,but also control the influences of near failure observation. Besides, the RAIM algorithm based on robust estimation is more efficient than the current RAIM algorithm for multiple constellation and multiple faults. Finally, the algorithm is tested by GPS/Bei Dou data.展开更多
Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To...Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods.展开更多
As one of the longest strike-slip fault in Asia,the Altyn Tagh Fault(ATF)defines the northern boundary of the Tibetan Plateau and plays a significant role inaccommodating the deformation resulting from the IndiaAsia...As one of the longest strike-slip fault in Asia,the Altyn Tagh Fault(ATF)defines the northern boundary of the Tibetan Plateau and plays a significant role inaccommodating the deformation resulting from the IndiaAsia convergence.展开更多
An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer, from which both syste...An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer, from which both system state and fault can be estimated. It is proved that the fault estimate error is related to the given H-infinity track performance indexes,as well as to the changing rate of the fault and the Lipschitz constant of the nonlinear item.The design steps of the adaptive observer are proposed.The simulation results show that the observer has good performance for fault estimate even when the system includes nonlinear terms, which confirms the effectiveness of the method.展开更多
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
文摘This paper is concerned with the problem of distributed joint state and sensor fault estimation for autonomous ground vehicles subject to unknown-but-bounded(UBB)external disturbance and measurement noise.In order to improve the estimation reliability and performance in cases of poor data collection and potential communication interruption,a multisensor network configuration is presented to cooperatively measure the vehicular yaw rate,and further compute local state and fault estimates.Toward this aim,an augmented descriptor vehicle model is first established,where the unknown sensor fault is modeled as an auxiliary state of the system model.Then,a new distributed ellipsoidal set-membership estimation approach is developed so as to construct an optimized bounding ellipsoidal set which guarantees to contain the vehicle’s true state and the sensor fault at each time step despite the existence of UBB disturbance and measurement noises.Furthermore,a convex optimization algorithm is put forward such that the gain matrix of each distributed estimator can be recursively obtained.Finally,simulation results are provided to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61203090)the Natural Science Foundation of Jiangsu Province of China(BK2012384)
文摘Taking the attitude control system of micro quad-rotor as a research object, a design scheme of fault estimator based on generalized Kalman-Yakubovic-Popov (GKYP) lemma is put forward to deal with the problem of estimating multiple actuators malfunctions with couplings. Using an H_index and an appropriate algorithm, the goal of weakening the coupling can be achieved by limiting the fault frequency to a certain range, then different kinds of actuator faults can be estimated correctly. The simulations demonstrate the reliability and validity of the proposed method.
基金supported in part by the National Natural Science Foundation of China (60774071)the National High Technology Research and Development Program of China (863 Program) (2008AA121302)+1 种基金the Major State Basic Research Development Program of China (973 Program) (2009CB724000)the State Scholarship Fund of China
文摘This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘The paper develops a novel framework of consensus control with fault-estimation-in-the-loop for multi-agent systems(MASs)in the presence of faults.A dynamic event-triggered protocol(DETP)by adding an auxiliary variable is utilized to improve the utilization of communication resources.First,a novel estimator with a noise bias is put forward to estimate the existed fault and then a consensus controller with fault compensation(FC)is adopted to realize the demand of reliability and safety of addressed MASs.Subsequently,a novel consensus control framework with fault-estimation-in-the-loop is developed to achieve the predetermined consensus performance with the l_(2)-l_(∞)constraint by employing the variance analysis and the Lyapunov stability approaches.Furthermore,the desired estimator and controller gains are obtained in light of the solution to an algebraic matrix equation and a linear matrix inequality in a recursive way,respectively.Finally,a simulation result is employed to verify the usefulness of the proposed design framework.
文摘This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias principle, a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model; then, a novel TSEKF is suggested such that it can simultane- ously estimate satellite attitude information and actuator faults no matter they are additive or mul- tiplicative; finally, the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs, and simulation results demonstrate the effec- tiveness of the proposed fault estimation approach.
基金supported by the National Basic Research Program of China(No.2012CB720003)the National Natural Science Foundation of China(No.61203151)
文摘In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performances of rapidly-varying faults estimation. Only original system matrices are adopted in the parameter design. The considered faults can be unbounded, and the proposed augmented observer can estimate a large class of faults. Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered, followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded. For the considered nonlinear system, convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method. Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system. The mance in estimating states and actuator faults. It also successfully. simulation results show satisfactory perfor- shows that multiple faults can be estimated
基金supported by the National Key Research and Development Plan of China(No.2019YFB1706001)the National Natural Science Foundation of China(No.61773001)。
文摘The article focuses on the design and application of an active reconfigurable controller that mitigates the effects of gust load and actuator faults on a flexible aircraft.A novel integrated adaptive output feedback scheme is investigated to address the actuator faults.The real-time fault values provided by the fault estimation module are considered in the reconfigurable control law to improve the fault-tolerant capability.The estimate values of faults and control gains are calculated by analyzing the stability of the overall system.The proposed controller is simulated using a flexible aircraft model with a discrete‘1-cosine’gust,and the results show that it can effectively mitigate the wing root moments and recover the flight maneuver stability after the aircraft suffered from gusts.
基金supported by the National Natural Science Foundation of China (61100103)
文摘Aiming at a class of nonlinear systems that contains faults, a novel iterative learning scheme is applied to fault detec- tion, and a novel algorithm of fault detection and estimation is proposed. This algorithm first constructs residual signals by the output of the practical system and the output of the designed fault tracking estimator, and then uses the residuals and the difference- value signal of the adjacent two residuals to gradually revise the introduced virtual faults, which can cause the virtual faults to close to the practical faults in systems, thereby achieving the goal of fault detection for systems. This algorithm not only makes full use of the existing valid information of systems and has a faster tracking con- vergent speed than the proportional-type (P-type) algorithm, but also calculates more simply than the proportional-derivative-type (PD-type) algorithm and avoids the unstable effects of differential operations in the system. The final simulation results prove the validity of the proposed algorithm.
基金supported by the Natural Sciences and Engineering Research Council of Canada.
文摘This paper investigates the problems of wind and actuator fault estimation for a quadrotor unmanned aerial vehicle(UAV).To e®ectively assess the safety and reliability of a quadrotor UAV in the presence of unknown wind disturbances,a two-stage particle filter(TSPF)scheme is proposed to obtain the simultaneous estimation of winds and actuator faults that may degrade the performance of the vehicle.In this scheme,the first-stage particle filter is used to estimate the states of the quadrotor UAV,and the second-stage particle filter is designed to produce estimates of unknown parameters,including the wind disturbances and actuator faults.To mitigate the degeneracy and impoverishment issues,the second-stage particle filter admits a parallel implementation of increased particle samplings for the wind and actuator fault estimation.Finally,simulation results are presented to demonstrate the e®ectiveness of the proposed scheme.
基金Sponsored by the Key Science Fund of Tianjin (Grant No. 023801211)
文摘A novel numerical algorithm for fault location estimation of single-phase-to-earth fault on EHV transmission lines is presented in this paper. The method is based on one-terminal voltage and current data and is used in a procedure that provides the automatic determination of faulted types and phases, rather than requires engineer to specify them. The loop and nodal equations comparing the faulted phase to non-fauhed phases of multi-parallel lines are introduced in the fauh location estimation models, in which source impedance of remote end is not involved. Precise algorithms of locating fault are derived. The effect of load flow and fauh resistance, on the location accuracy, are effectively eliminated. The algorithms are demonstrated by digital computer simulations.
基金supported by the National Natural Science Foundation of China (60874054)
文摘To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61100103)
文摘In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited technology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algorithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for discrete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6147315961374136+1 种基金61104028)the Research Innovation Program of Nantong University(YKC16004)
文摘A co-design scheme of event-triggered sampling mechanism and active fault tolerant control(FTC) is developed. Firstly,a fault diagnosis observer is designed to estimate both the fault and the state simultaneously by using the event-triggered sampled output. Some H∞constraints between the estimation errors and the event-triggered sampling mechanism are established to ensure the estimation accuracy. Then, based on the constraints and the obtained fault information, an event-triggered detector and a static fault tolerant controller are co-designed to guarantee the stability of the faulty system and to reduce the sensor communication cost.Furthermore, the problem of the event detector and dynamic FTC co-design is also investigated. Simulation results of an unstable batch reactor are finally provided to illustrate the effectiveness of the proposed method.
文摘In this paper, an actuator fault diagnosis scheme based on the backstepping method is proposed for a class of nonlinear heat equations. The fault diagnosis scheme includes fault detection, fault estimation and time to failure (TTF) prediction. Firstly, we achieve fault detection by comparing the detection residual with a predetermined threshold, where the detection residual is defined as the difference between the observer output and the system measurement output. Then, we estimate the fault function through the fault parameter update law and calculate the TTF using only limited measurements. Finally, the numerical simulation is performed on a nonlinear heat equation to verify the effectiveness of the proposed fault diagnosis scheme.
基金supported by the National 863 project(2013AA122501-1)the National Natural Science Foundation of China(41020144004,41474015,41374019,41374003,41274040)
文摘Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm is only suitable for single fault detection, single GNSS constellation. However, multiple satellite failure should be considered when more than one satellite navigation system are adopted. To detect and exclude multi-fault, most current algorithms perform an iteration procedure considering all possible fault model which lead to heavy computation burden. An alternative RAIM is presented in this paper based on multiple satellite constellations(for example, GPS and Bei Dou(BDS) etc.) and robust estimation for multi-fault detection and exclusion, which can not only detect multi-failures,but also control the influences of near failure observation. Besides, the RAIM algorithm based on robust estimation is more efficient than the current RAIM algorithm for multiple constellation and multiple faults. Finally, the algorithm is tested by GPS/Bei Dou data.
基金Supported by the National Natural Science Foundation of China(61573051,61472021)the Natural Science Foundation of Beijing(4142039)+1 种基金Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2015KF-01)Fundamental Research Funds for the Central Universities(PT1613-05)
文摘Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods.
基金supported by the National Natural Sciences Foundation of China(Grants No.41202156 and 41330211)China Geological Survey(Grants No.12120115026901 and 12120115027001)the Institute of Geology,CAGS(Grant No.J1520)
文摘As one of the longest strike-slip fault in Asia,the Altyn Tagh Fault(ATF)defines the northern boundary of the Tibetan Plateau and plays a significant role inaccommodating the deformation resulting from the IndiaAsia convergence.
文摘An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer, from which both system state and fault can be estimated. It is proved that the fault estimate error is related to the given H-infinity track performance indexes,as well as to the changing rate of the fault and the Lipschitz constant of the nonlinear item.The design steps of the adaptive observer are proposed.The simulation results show that the observer has good performance for fault estimate even when the system includes nonlinear terms, which confirms the effectiveness of the method.