Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest Chin...Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest China. The northwest striking No.1 slope break zone, which is a representative of superimposed basins in the Tarim Basin, can be divided into five parts due to the intersection of the northeast strike-slip faults. Controlled by the tectonic framework, the types and properties of reservoirs and the hydrocarbon compositions can also be divided into five parts from east to west. Anomalies of all the parameters were found on the fault intersection zone and weakened up-dip along the structural ridge away from it. Thus, it can be inferred that the intersection zone is the hydrocarbon charging position. This new conclusion differs greatly from the traditional viewpoint, which believes that the hydrocarbon migrates and accumulates along the whole plane of the No.1 slope break zone. The viewpoint is further supported by the evidence from the theory of main pathway systems, obvious improvement of the reservoir quality (2-3 orders of magnitude at the intersection zone) and the formation mechanisms of the fault intersection zone. Differential hydrocarbon migration and entrapment exists in and around the strike- slip faults. This is controlled by the internal structure of faults. It is concluded that the more complicated the fault structure is, the more significant the effects will be. If there is a deformation band, it will hinder the cross fault migration due to the common feature of two to four orders of magnitude reduction in permeability. Otherwise, hydrocarbons tend to accumulate in the up-dip structure under the control of buoyancy. Further research on the internal fault structure should be emphasized.展开更多
Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of ...Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.展开更多
The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the gro...The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the growth,interaction,as well as linkage of new fault segments.This study analyses a complex multi-phase oblique extension fault system in the Nanpu Sag(NPS)of the Bohai Bay Basin(BBB),China.High-resolution three-dimensional(3D)seismic data and analogue modelling indicate that the oblique extensional reactivation of pre-existing structures governs the sequential arrangement of fault segments in the caprock,and they dip synthetically to the reactivated fault at depth.During the NW-SE extension in the Eocene,the predominant movement of the pre-existing fault is strike-slip.Subsequently,during the N-S extension since the Oligocene,inclined at 20.to the pre-existing fault,forming splay fault segments and ultimately creating large en-echelon arcuate faults linked by relay ramps.Using fault throw-distance(T-D)and laser scanning,we reconstructed the fault evolution model of oblique extension reactivation in the presence of a ductile detachment basement.Our study illustrates that the arcuate faults can be categorized into linear master fault segments controlled by pre-existing structures,bending splay faults in the termination zone,and normal fault segments responding to the regional stress field.The interaction between faults occurs among normal faults and strike-slip faults,and the kinematic unification of the two fault systems is accomplished in the intersection zone.As the faults continue to evolve,the new fault segments tend to relinquish the control of pre-existing structures and concentrate more on the development of planar and continuous major faults.The ductile detachment layer significantly contributes to the uniform distribution of strain,resulting in narrow shear zones and discontinuous normal faults in its absence.展开更多
Several earthquakes with M S≥5.0 occurred in the Datong seismic region in 1989, 1991 and 1999. The precise focus location of the earthquake sequence was made by the records of the remote sensing seismic station netwo...Several earthquakes with M S≥5.0 occurred in the Datong seismic region in 1989, 1991 and 1999. The precise focus location of the earthquake sequence was made by the records of the remote sensing seismic station network in Datong. Using that data together with macro-intensity distribution and focal mechanism solutions, we analyze the difference among three subsequences. The results show that the focal fault of the 1999 M S5.6 earthquake was a NWW-trending left-lateral strike-slip fault. It is 16 km long and 12 km wide. It developed at the depth of 5 km and is nearly vertical in dip. The two previous earthquake subsequences, however, were generated by activity along NNE-trending right-lateral strike-slip fault. It can be found that the rupture direction of the 1999 earthquake has changed. It is generally found that a rupture zone has more than two directions and has different strength along these two directions. The complicate degree of focal circumstance is related to the type of earthquake sequences. There is the NE-trending Dawangcun fault and the NW-trending Tuanbu fault in the seismic region, but no proof indicates a connection between focal faults and these two tectonic faults. The feature that focal faults of three subsequences are strike-slip is different from that of the two tectonic faults. It is suggested that the 1999 earthquake subsequence was possibly generated by a new rupture.展开更多
The gold orefield studied is located on the south border of the underthrust-collision zone of the Qinling microplate and the North China microplate in the Indosinian epoch. The main ore deposits localized in the area ...The gold orefield studied is located on the south border of the underthrust-collision zone of the Qinling microplate and the North China microplate in the Indosinian epoch. The main ore deposits localized in the area where the WNW-trending compression-shear type fault of the Indosinian epoch intersected the NE-trending tenso-shear type fault of the Yanshanian epoch. The orebody appeared in a chambered or wedged form. The mineral composition is relatively complex. On the southeastern border of the orefield there have developed intermediate-acid anatectic magmatites of the Mesozoic Era. Three-phase inclusions (Lco2, Vco2 and LNaCl-H2O) comprise over 50%, associated with vapor phase consisting of H2O, CO2, CO, CH4, N2 and H2. The ore-forming fluids can be divided into 2 stages (the early and the late). The samples are projected in the area of mixture of initial magmatic and meteoric water on the δD-δ18O diagram, suggesting two types of mineralization, i.e. the re-equilibrated magmatic-hydrothermal type and the circulating geothermal water type of a meteoric water source. The mineralization occurring in this orefield might be a superimposition of 2 tectono-magmatic activities (the Indosinian and Yanshanian movements). Therefore, it is considered a superimposed B-S type gold orefield.展开更多
基金supported by the National 973 Basic Research Program (Grant No.2006CB202308)the Major National Science & Technology Program (2008ZX05008-004-012)
文摘Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest China. The northwest striking No.1 slope break zone, which is a representative of superimposed basins in the Tarim Basin, can be divided into five parts due to the intersection of the northeast strike-slip faults. Controlled by the tectonic framework, the types and properties of reservoirs and the hydrocarbon compositions can also be divided into five parts from east to west. Anomalies of all the parameters were found on the fault intersection zone and weakened up-dip along the structural ridge away from it. Thus, it can be inferred that the intersection zone is the hydrocarbon charging position. This new conclusion differs greatly from the traditional viewpoint, which believes that the hydrocarbon migrates and accumulates along the whole plane of the No.1 slope break zone. The viewpoint is further supported by the evidence from the theory of main pathway systems, obvious improvement of the reservoir quality (2-3 orders of magnitude at the intersection zone) and the formation mechanisms of the fault intersection zone. Differential hydrocarbon migration and entrapment exists in and around the strike- slip faults. This is controlled by the internal structure of faults. It is concluded that the more complicated the fault structure is, the more significant the effects will be. If there is a deformation band, it will hinder the cross fault migration due to the common feature of two to four orders of magnitude reduction in permeability. Otherwise, hydrocarbons tend to accumulate in the up-dip structure under the control of buoyancy. Further research on the internal fault structure should be emphasized.
基金partly supportedby National Natural Science Foundation of China(Grant No.41472103)
文摘Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.
基金funded by the National Natural Science Foundation of China (grant No.41472116)the Jidong Oil Company of China National Petroleum Corporation (grant No.JDYT-2017-JS-308)the Beijing Research Centre of China National Offshore Oil Company (grant No.CCL2022RCPS2017XNN)。
文摘The evolution of faults within the same stress field is frequently influenced by numerous factors,involving the reactivation of pre-existing structures,stress transmission through ductile detachment layers,and the growth,interaction,as well as linkage of new fault segments.This study analyses a complex multi-phase oblique extension fault system in the Nanpu Sag(NPS)of the Bohai Bay Basin(BBB),China.High-resolution three-dimensional(3D)seismic data and analogue modelling indicate that the oblique extensional reactivation of pre-existing structures governs the sequential arrangement of fault segments in the caprock,and they dip synthetically to the reactivated fault at depth.During the NW-SE extension in the Eocene,the predominant movement of the pre-existing fault is strike-slip.Subsequently,during the N-S extension since the Oligocene,inclined at 20.to the pre-existing fault,forming splay fault segments and ultimately creating large en-echelon arcuate faults linked by relay ramps.Using fault throw-distance(T-D)and laser scanning,we reconstructed the fault evolution model of oblique extension reactivation in the presence of a ductile detachment basement.Our study illustrates that the arcuate faults can be categorized into linear master fault segments controlled by pre-existing structures,bending splay faults in the termination zone,and normal fault segments responding to the regional stress field.The interaction between faults occurs among normal faults and strike-slip faults,and the kinematic unification of the two fault systems is accomplished in the intersection zone.As the faults continue to evolve,the new fault segments tend to relinquish the control of pre-existing structures and concentrate more on the development of planar and continuous major faults.The ductile detachment layer significantly contributes to the uniform distribution of strain,resulting in narrow shear zones and discontinuous normal faults in its absence.
文摘Several earthquakes with M S≥5.0 occurred in the Datong seismic region in 1989, 1991 and 1999. The precise focus location of the earthquake sequence was made by the records of the remote sensing seismic station network in Datong. Using that data together with macro-intensity distribution and focal mechanism solutions, we analyze the difference among three subsequences. The results show that the focal fault of the 1999 M S5.6 earthquake was a NWW-trending left-lateral strike-slip fault. It is 16 km long and 12 km wide. It developed at the depth of 5 km and is nearly vertical in dip. The two previous earthquake subsequences, however, were generated by activity along NNE-trending right-lateral strike-slip fault. It can be found that the rupture direction of the 1999 earthquake has changed. It is generally found that a rupture zone has more than two directions and has different strength along these two directions. The complicate degree of focal circumstance is related to the type of earthquake sequences. There is the NE-trending Dawangcun fault and the NW-trending Tuanbu fault in the seismic region, but no proof indicates a connection between focal faults and these two tectonic faults. The feature that focal faults of three subsequences are strike-slip is different from that of the two tectonic faults. It is suggested that the 1999 earthquake subsequence was possibly generated by a new rupture.
文摘The gold orefield studied is located on the south border of the underthrust-collision zone of the Qinling microplate and the North China microplate in the Indosinian epoch. The main ore deposits localized in the area where the WNW-trending compression-shear type fault of the Indosinian epoch intersected the NE-trending tenso-shear type fault of the Yanshanian epoch. The orebody appeared in a chambered or wedged form. The mineral composition is relatively complex. On the southeastern border of the orefield there have developed intermediate-acid anatectic magmatites of the Mesozoic Era. Three-phase inclusions (Lco2, Vco2 and LNaCl-H2O) comprise over 50%, associated with vapor phase consisting of H2O, CO2, CO, CH4, N2 and H2. The ore-forming fluids can be divided into 2 stages (the early and the late). The samples are projected in the area of mixture of initial magmatic and meteoric water on the δD-δ18O diagram, suggesting two types of mineralization, i.e. the re-equilibrated magmatic-hydrothermal type and the circulating geothermal water type of a meteoric water source. The mineralization occurring in this orefield might be a superimposition of 2 tectono-magmatic activities (the Indosinian and Yanshanian movements). Therefore, it is considered a superimposed B-S type gold orefield.