With the rapid advancement of deep learning and the increasing availability of large-scale data,fault prediction for electrical equipment has become a vital area of research.This paper explores the application of deep...With the rapid advancement of deep learning and the increasing availability of large-scale data,fault prediction for electrical equipment has become a vital area of research.This paper explores the application of deep learning techniques in predicting faults within electrical systems,focusing on the challenges and methodologies that can enhance prediction accuracy and system reliability.Traditional fault prediction methods,such as threshold-based models and statistical approaches,often fall short in handling complex,nonlinear data and large-scale systems.In contrast,deep learning models,particularly Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs),have shown significant promise in learning from large and diverse datasets to detect subtle patterns that indicate potential failures.This paper also discusses the importance of data collection and preprocessing,model training,evaluation metrics,and cross-validation techniques,all of which contribute to improving the robustness and accuracy of fault prediction models.Despite the advancements,challenges remain,such as data quality,model interpretability,and computational efficiency.The paper concludes by outlining future research directions and the potential impact of emerging technologies like the Internet of Things(IoT)and edge computing in the field of fault prediction.展开更多
Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantag...Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantage of prediction information provided by the two models and improves the prediction precision.Finally,this model is introduced to predict the system fault time according to the output voltages of a certain type of radar transmitter.展开更多
This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is intro...This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.展开更多
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ...Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.展开更多
Fighters and other complex engineering systems have many characteristics such as difficult modeling and testing, multiple working situations, and high cost. Aim at these points, a new kind of real-time fault predictor...Fighters and other complex engineering systems have many characteristics such as difficult modeling and testing, multiple working situations, and high cost. Aim at these points, a new kind of real-time fault predictor is designed based on an improved k-nearest neighbor method, which needs neither the math model of system nc, the training data and prior knowledge. It can study and predict while system's running, so that it can overcome the difficulty of data acquirement. Besides, this predictor has a fast prediction speed, and the false alarm rate and missing alarm rate can be adjusted randomly. The method is simple and universalizable. The result of simulation on fighter F-16 proved the effidency.展开更多
Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping...Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series prediction. However, the ill-posedness problem of reservoir neural networks has seriously restricted the generalization performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function involves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is introduced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight is effectively controlled and the ill-posedness problem is solved. Because the training speed of ordinary reservoir networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and generalization ability. Experiments on Mackey–Glass and sunspot time series prediction prove the effectiveness of the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some timeseries obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data.The final prediction correct rate reaches 81%.展开更多
The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.B...The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance.展开更多
Nowadays, the elevator has become an indispensable means of indoor transportation in people’s life, but in recent years this kind of traffic tools has caused many casualties because of the gate system fault. In order...Nowadays, the elevator has become an indispensable means of indoor transportation in people’s life, but in recent years this kind of traffic tools has caused many casualties because of the gate system fault. In order to ensure the safe and reliable operation of the elevator, the failure of elevator door system was predicted in this paper. Against the fault type of elevator door system: elevator door opened, excessive vibration when elevator door opened or closed, elevator door did not open or closed when reached the specified level. Three fault types were used as the output of the prediction model. There were 8 reasons for the failure, used them as input. A model based on particle swarm optimization (PSO) and BP neural network was established, using MATLAB to emulation;the results showed that: PSO-BP neural network algorithm was feasible in the fault prediction of the elevator door system.展开更多
Inertial system platforms are a kind of important precision devices,which have the characteristics of difficult acquisition for state data and small sample scale.Focusing on the model optimization for data-driven faul...Inertial system platforms are a kind of important precision devices,which have the characteristics of difficult acquisition for state data and small sample scale.Focusing on the model optimization for data-driven fault state prediction and quantitative degreemeasurement,a fast small-sample supersphere one-class SVMmodelingmethod using support vectors pre-selection is systematically studied in this paper.By theorem-proving the irrelevance between themodel’s learning result and the non-support vectors(NSVs),the distribution characters of the support vectors are analyzed.On this basis,a modeling method with selected samples having specific geometry character fromthe training sets is also proposed.The method can remarkably eliminate theNSVs and improve the algorithm’s efficiency.The experimental results testify that the scale of training samples and the modeling time consumption both give a sharply decrease using the support vectors pre-selection method.The experimental results on inertial devices also show good fault prediction capability and effectiveness of quantitative anomaly measurement.展开更多
Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain ...Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times.展开更多
Condition-based maintenance based on fault prediction has been widely concerned by the industry. Most of the contributions on fault prediction are based on various sensor data and mathematical models of the equipment....Condition-based maintenance based on fault prediction has been widely concerned by the industry. Most of the contributions on fault prediction are based on various sensor data and mathematical models of the equipment. The complexity of the model and data signal is the key factor affecting the practicability of the model. In addition, even for the same type and batch of equipment, the manufacturing process, operation environment and other factors also affect the model parameters. In this paper, a series event model is conducted to predict the fault of marine diesel engines. Numerical example illustrates that the proposed event model is feasible.展开更多
Software testing is an integral part of software development. Not only that testing exists in each software iteration cycle, but it also consumes a considerable amount of resources. While resources such as machinery a...Software testing is an integral part of software development. Not only that testing exists in each software iteration cycle, but it also consumes a considerable amount of resources. While resources such as machinery and manpower are often restricted, it is crucial to decide where and how much effort to put into testing. One way to address this problem is to identify which components of the subject under the test are more error-prone and thus demand more testing efforts. Recent development in machine learning techniques shows promising potential to predict faults in different components of a software system. This work conducts an empirical study to explore the feasibility of using static software metrics to predict software faults. We apply four machine learning techniques to construct fault prediction models from the PROMISE data set and evaluate the effectiveness of using static software metrics to build fault prediction models in four continuous versions of Apache Ant. The empirical results show that the combined software metrics generate the least misclassification errors. The fault prediction results vary significantly among different machine learning techniques and data set. Overall, fault prediction models built with the support vector machine (SVM) have the lowest misclassification errors.展开更多
Accurate fault prediction can obviously reduce cost and decrease the probability of accidents so as to improve the performance of the system testing and maintenance. Traditional fault prediction methods are always off...Accurate fault prediction can obviously reduce cost and decrease the probability of accidents so as to improve the performance of the system testing and maintenance. Traditional fault prediction methods are always offline that are not suitable for online and real-time processing. For the complicated nonlinear and non-stationary time series, it is hard to achieve exact predicting result with single models such as support vector regression (SVR), artifieial neural network (ANN), and autoregressive moving average (ARMA). Combined with the accurate online support vector regression (AOSVR) algorithm and ARMA model, a new online approach is presented to forecast fault with time series prediction. The fault trend feature can be extracted by the AOSVR with global kernel for general fault modes. Moreover, its prediction residual that represents the local high-frequency components is synchronously revised and compensated by the sliding time window ARMA model. Fault prediction with combined AOSVR and ARMA can be realized better than with the single one. Experiments on Tennessee Eastman process fault data show the new method is practical and effective.展开更多
In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-dep...In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-depth research,this paper proposes a warship equipment FPGA software based on Xilinx integrated development environment( ISE) and ModelSim software.Functional simulation and timing simulation to verify the correctness of the logic design of the FPGA,this method is very convenient to view the signal waveform inside the FPGA program to help FPGA test engineers to achieve FPGA fault prediction and diagnosis. This test method has important engineering significance for the upgrading of warship equipment.展开更多
Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation betwe...Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation between catenary faults and meteorological conditions, and further the effect of meteorological conditions on catenary oper-ation. Moreover, machine learning is used for catenary fault prediction. As with the single decision tree, only a small number of training samples can be classified cor-rectly by each weak classifier, the AdaBoost algorithm is adopted to adjust the weights of misclassified samples and weak classifiers, and train multiple weak classifiers. Finally, the weak classifiers are combined to construct a strong classifier, with which the final prediction result is obtained. In order to validate the prediction method, an example is provided based on the historical data from a railway bureau of China. The result shows that the mapping relation between meteorological conditions and catenary faults can be established accurately by AdaBoost algorithm. The AdaBoost algorithm can accurately predict a catenary fault if the meteorological conditions are provided.展开更多
The basic principle and method of Grey Model prediction are presented. In view of the defects of general GM(1,1) model, an improved method is proposed. That is using the particle swarm optimization algorithm to obtain...The basic principle and method of Grey Model prediction are presented. In view of the defects of general GM(1,1) model, an improved method is proposed. That is using the particle swarm optimization algorithm to obtain the best forecast dimension and using metabolism to make the model parameters adaptively change. Finally, the improved Grey Model is used to predict the fault of high voltage power supply circuit of a certain type of modern air-borne radar. The results which are computed and simulated by Matlab software show that the forecast precision of improved Grey Model is higher than that of original Grey Model.展开更多
In this paper a model of a high pressure hydraulic system was developed to simulate the effect of increased internal leakages inside the hydraulic cylinder and the 4/2 way directional control valve and to calculate th...In this paper a model of a high pressure hydraulic system was developed to simulate the effect of increased internal leakages inside the hydraulic cylinder and the 4/2 way directional control valve and to calculate the main parameters of the hydraulic system under various loads through the use of leakage-simulating throttle valves. After the completion of modeling, the throttle valves that simulate the internal leakages were calibrated and a number of test runs were performed for the cases of normal operation and the operation with increased internal leakages. The theoretical predictions were compared against the experimental results from an actual hydraulic test platform installed in the laboratory. In all cases, modeling and experimental data curves correlate very well in form, magnitude and response times for all the system’s main parameters. This proves that the present modeling can be used to accurately predict various faults in hydraulic systems, and can thus be used for proactive fault finding in many cases, especially when the defective component is not easily detected and obvious at first sight.展开更多
Software fault prediction is one of the most fundamental but significant management techniques in software dependability assessment. In this paper we concern the software fault prediction using a multilayer-perceptron...Software fault prediction is one of the most fundamental but significant management techniques in software dependability assessment. In this paper we concern the software fault prediction using a multilayer-perceptron neural network, where the underlying software fault count data are transformed to the Gaussian data, by means of the well-known Box-Cox power transformation. More specially, we investigate the long-term behavior of software fault counts by the neural network, and perform the multi-stage look ahead prediction of the cumulative number of software faults detected in the future software testing. In numerical examples with two actual software fault data sets, we compare our neural network approach with the existing software reliability growth models based on nonhomogeneous Poisson process, in terms of predictive performance with average relative error, and show that the data transformation employed in this paper leads to an improvement in prediction accuracy.展开更多
Class imbalance is a common characteristic of industrial data that adversely affects industrial data mining because it leads to the biased training of machine learning models.To address this issue,the augmentation of ...Class imbalance is a common characteristic of industrial data that adversely affects industrial data mining because it leads to the biased training of machine learning models.To address this issue,the augmentation of samples in minority classes based on generative adversarial networks(GANs)has been demonstrated as an effective approach.This study proposes a novel GAN-based minority class augmentation approach named classifier-aided minority augmentation generative adversarial network(CMAGAN).In the CMAGAN framework,an outlier elimination strategy is first applied to each class to minimize the negative impacts of outliers.Subsequently,a newly designed boundary-strengthening learning GAN(BSLGAN)is employed to generate additional samples for minority classes.By incorporating a supplementary classifier and innovative training mechanisms,the BSLGAN focuses on learning the distribution of samples near classification boundaries.Consequently,it can fully capture the characteristics of the target class and generate highly realistic samples with clear boundaries.Finally,the new samples are filtered based on the Mahalanobis distance to ensure that they are within the desired distribution.To evaluate the effectiveness of the proposed approach,CMAGAN was used to solve the class imbalance problem in eight real-world fault-prediction applications.The performance of CMAGAN was compared with that of seven other algorithms,including state-of-the-art GAN-based methods,and the results indicated that CMAGAN could provide higher-quality augmented results.展开更多
In recent times,the impact of typhoon disasters on integrated energy active distribution networks(IEADNs)has received increasing attention,particularly,in terms of effective cascading fault path prediction and enhance...In recent times,the impact of typhoon disasters on integrated energy active distribution networks(IEADNs)has received increasing attention,particularly,in terms of effective cascading fault path prediction and enhanced fault recovery performance.In this study,we propose a modified ORNL-PSerc-Alaska(OPA)model based on optimal power flow(OPF)calculation to forecast IEADN cascading fault paths.We first established the topology and operational model of the IEADNs,and the typical fault scenario was chosen according to the component fault probability and information entropy.The modified OPA model consisted of two layers:An upper-layer model to determine the cascading fault location and a lower-layer model to calculate the OPF by using Yalmip and CPLEX and provide the data to update the upper-layer model.The approach was validated via the modified IEEE 33-node distribution system and two real IEADNs.Simulation results showed that the fault trend forecasted by the novel OPA model corresponded well with the development and movement of the typhoon above the IEADN.The proposed model also increased the load recovery rate by>24%compared to the traditional OPA model.展开更多
文摘With the rapid advancement of deep learning and the increasing availability of large-scale data,fault prediction for electrical equipment has become a vital area of research.This paper explores the application of deep learning techniques in predicting faults within electrical systems,focusing on the challenges and methodologies that can enhance prediction accuracy and system reliability.Traditional fault prediction methods,such as threshold-based models and statistical approaches,often fall short in handling complex,nonlinear data and large-scale systems.In contrast,deep learning models,particularly Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs),have shown significant promise in learning from large and diverse datasets to detect subtle patterns that indicate potential failures.This paper also discusses the importance of data collection and preprocessing,model training,evaluation metrics,and cross-validation techniques,all of which contribute to improving the robustness and accuracy of fault prediction models.Despite the advancements,challenges remain,such as data quality,model interpretability,and computational efficiency.The paper concludes by outlining future research directions and the potential impact of emerging technologies like the Internet of Things(IoT)and edge computing in the field of fault prediction.
基金National Natural Science Foundation of China(No.51175480)
文摘Based on modeling principle of GM(1,1)model and linear regression model,a combined prediction model is established to predict equipment fault by the fitting of two models.The new prediction model takes full advantage of prediction information provided by the two models and improves the prediction precision.Finally,this model is introduced to predict the system fault time according to the output voltages of a certain type of radar transmitter.
基金Supported by the Shandong Natural Science Foundation(ZR2013BL008)
文摘This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.
基金the National Natural Science Foundation of China(No.51875209)the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120060)the Open Funds of State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment。
文摘Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.
文摘Fighters and other complex engineering systems have many characteristics such as difficult modeling and testing, multiple working situations, and high cost. Aim at these points, a new kind of real-time fault predictor is designed based on an improved k-nearest neighbor method, which needs neither the math model of system nc, the training data and prior knowledge. It can study and predict while system's running, so that it can overcome the difficulty of data acquirement. Besides, this predictor has a fast prediction speed, and the false alarm rate and missing alarm rate can be adjusted randomly. The method is simple and universalizable. The result of simulation on fighter F-16 proved the effidency.
基金Supported by the National Natural Science Foundation of China(61074153)
文摘Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series prediction. However, the ill-posedness problem of reservoir neural networks has seriously restricted the generalization performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function involves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is introduced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight is effectively controlled and the ill-posedness problem is solved. Because the training speed of ordinary reservoir networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and generalization ability. Experiments on Mackey–Glass and sunspot time series prediction prove the effectiveness of the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some timeseries obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data.The final prediction correct rate reaches 81%.
基金supported by National Natural Science Foundation of China(No.51275052)Beijing Natural Science Foundation(No.3131002)
文摘The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance.
文摘Nowadays, the elevator has become an indispensable means of indoor transportation in people’s life, but in recent years this kind of traffic tools has caused many casualties because of the gate system fault. In order to ensure the safe and reliable operation of the elevator, the failure of elevator door system was predicted in this paper. Against the fault type of elevator door system: elevator door opened, excessive vibration when elevator door opened or closed, elevator door did not open or closed when reached the specified level. Three fault types were used as the output of the prediction model. There were 8 reasons for the failure, used them as input. A model based on particle swarm optimization (PSO) and BP neural network was established, using MATLAB to emulation;the results showed that: PSO-BP neural network algorithm was feasible in the fault prediction of the elevator door system.
基金the National Natural Science Foundation of China(Grant No.61403397)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant Nos.2020JM-358,2015JM6313).
文摘Inertial system platforms are a kind of important precision devices,which have the characteristics of difficult acquisition for state data and small sample scale.Focusing on the model optimization for data-driven fault state prediction and quantitative degreemeasurement,a fast small-sample supersphere one-class SVMmodelingmethod using support vectors pre-selection is systematically studied in this paper.By theorem-proving the irrelevance between themodel’s learning result and the non-support vectors(NSVs),the distribution characters of the support vectors are analyzed.On this basis,a modeling method with selected samples having specific geometry character fromthe training sets is also proposed.The method can remarkably eliminate theNSVs and improve the algorithm’s efficiency.The experimental results testify that the scale of training samples and the modeling time consumption both give a sharply decrease using the support vectors pre-selection method.The experimental results on inertial devices also show good fault prediction capability and effectiveness of quantitative anomaly measurement.
基金National Natural Science Foundation of China(Nos.61863024,71761023)Funding for Scientific Research Projects of Colleges and Universities in Gansu Province(Nos.2018C-11,2018A-22)Natural Science Fund of Gansu Province(No.18JR3RA130)。
文摘Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times.
文摘Condition-based maintenance based on fault prediction has been widely concerned by the industry. Most of the contributions on fault prediction are based on various sensor data and mathematical models of the equipment. The complexity of the model and data signal is the key factor affecting the practicability of the model. In addition, even for the same type and batch of equipment, the manufacturing process, operation environment and other factors also affect the model parameters. In this paper, a series event model is conducted to predict the fault of marine diesel engines. Numerical example illustrates that the proposed event model is feasible.
文摘Software testing is an integral part of software development. Not only that testing exists in each software iteration cycle, but it also consumes a considerable amount of resources. While resources such as machinery and manpower are often restricted, it is crucial to decide where and how much effort to put into testing. One way to address this problem is to identify which components of the subject under the test are more error-prone and thus demand more testing efforts. Recent development in machine learning techniques shows promising potential to predict faults in different components of a software system. This work conducts an empirical study to explore the feasibility of using static software metrics to predict software faults. We apply four machine learning techniques to construct fault prediction models from the PROMISE data set and evaluate the effectiveness of using static software metrics to build fault prediction models in four continuous versions of Apache Ant. The empirical results show that the combined software metrics generate the least misclassification errors. The fault prediction results vary significantly among different machine learning techniques and data set. Overall, fault prediction models built with the support vector machine (SVM) have the lowest misclassification errors.
文摘Accurate fault prediction can obviously reduce cost and decrease the probability of accidents so as to improve the performance of the system testing and maintenance. Traditional fault prediction methods are always offline that are not suitable for online and real-time processing. For the complicated nonlinear and non-stationary time series, it is hard to achieve exact predicting result with single models such as support vector regression (SVR), artifieial neural network (ANN), and autoregressive moving average (ARMA). Combined with the accurate online support vector regression (AOSVR) algorithm and ARMA model, a new online approach is presented to forecast fault with time series prediction. The fault trend feature can be extracted by the AOSVR with global kernel for general fault modes. Moreover, its prediction residual that represents the local high-frequency components is synchronously revised and compensated by the sliding time window ARMA model. Fault prediction with combined AOSVR and ARMA can be realized better than with the single one. Experiments on Tennessee Eastman process fault data show the new method is practical and effective.
文摘In order to solve the current high failure rate of warship equipment field programmable gate array( FPGA) software,fault detection is not timely enough and FPGA detection equipment is expensive and so on. After in-depth research,this paper proposes a warship equipment FPGA software based on Xilinx integrated development environment( ISE) and ModelSim software.Functional simulation and timing simulation to verify the correctness of the logic design of the FPGA,this method is very convenient to view the signal waveform inside the FPGA program to help FPGA test engineers to achieve FPGA fault prediction and diagnosis. This test method has important engineering significance for the upgrading of warship equipment.
基金supported by the Scientific and Technological Research and Development Program of China Railway Corporation under Grant N2018G023by the Science and Technology Projects of Sichuan Province under Grants 2018RZ0075
文摘Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation between catenary faults and meteorological conditions, and further the effect of meteorological conditions on catenary oper-ation. Moreover, machine learning is used for catenary fault prediction. As with the single decision tree, only a small number of training samples can be classified cor-rectly by each weak classifier, the AdaBoost algorithm is adopted to adjust the weights of misclassified samples and weak classifiers, and train multiple weak classifiers. Finally, the weak classifiers are combined to construct a strong classifier, with which the final prediction result is obtained. In order to validate the prediction method, an example is provided based on the historical data from a railway bureau of China. The result shows that the mapping relation between meteorological conditions and catenary faults can be established accurately by AdaBoost algorithm. The AdaBoost algorithm can accurately predict a catenary fault if the meteorological conditions are provided.
文摘The basic principle and method of Grey Model prediction are presented. In view of the defects of general GM(1,1) model, an improved method is proposed. That is using the particle swarm optimization algorithm to obtain the best forecast dimension and using metabolism to make the model parameters adaptively change. Finally, the improved Grey Model is used to predict the fault of high voltage power supply circuit of a certain type of modern air-borne radar. The results which are computed and simulated by Matlab software show that the forecast precision of improved Grey Model is higher than that of original Grey Model.
文摘In this paper a model of a high pressure hydraulic system was developed to simulate the effect of increased internal leakages inside the hydraulic cylinder and the 4/2 way directional control valve and to calculate the main parameters of the hydraulic system under various loads through the use of leakage-simulating throttle valves. After the completion of modeling, the throttle valves that simulate the internal leakages were calibrated and a number of test runs were performed for the cases of normal operation and the operation with increased internal leakages. The theoretical predictions were compared against the experimental results from an actual hydraulic test platform installed in the laboratory. In all cases, modeling and experimental data curves correlate very well in form, magnitude and response times for all the system’s main parameters. This proves that the present modeling can be used to accurately predict various faults in hydraulic systems, and can thus be used for proactive fault finding in many cases, especially when the defective component is not easily detected and obvious at first sight.
文摘Software fault prediction is one of the most fundamental but significant management techniques in software dependability assessment. In this paper we concern the software fault prediction using a multilayer-perceptron neural network, where the underlying software fault count data are transformed to the Gaussian data, by means of the well-known Box-Cox power transformation. More specially, we investigate the long-term behavior of software fault counts by the neural network, and perform the multi-stage look ahead prediction of the cumulative number of software faults detected in the future software testing. In numerical examples with two actual software fault data sets, we compare our neural network approach with the existing software reliability growth models based on nonhomogeneous Poisson process, in terms of predictive performance with average relative error, and show that the data transformation employed in this paper leads to an improvement in prediction accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.52375256)the Natural Science Foundation of Shanghai Municipality(Grant Nos.21ZR1431500 and 23ZR1431600).
文摘Class imbalance is a common characteristic of industrial data that adversely affects industrial data mining because it leads to the biased training of machine learning models.To address this issue,the augmentation of samples in minority classes based on generative adversarial networks(GANs)has been demonstrated as an effective approach.This study proposes a novel GAN-based minority class augmentation approach named classifier-aided minority augmentation generative adversarial network(CMAGAN).In the CMAGAN framework,an outlier elimination strategy is first applied to each class to minimize the negative impacts of outliers.Subsequently,a newly designed boundary-strengthening learning GAN(BSLGAN)is employed to generate additional samples for minority classes.By incorporating a supplementary classifier and innovative training mechanisms,the BSLGAN focuses on learning the distribution of samples near classification boundaries.Consequently,it can fully capture the characteristics of the target class and generate highly realistic samples with clear boundaries.Finally,the new samples are filtered based on the Mahalanobis distance to ensure that they are within the desired distribution.To evaluate the effectiveness of the proposed approach,CMAGAN was used to solve the class imbalance problem in eight real-world fault-prediction applications.The performance of CMAGAN was compared with that of seven other algorithms,including state-of-the-art GAN-based methods,and the results indicated that CMAGAN could provide higher-quality augmented results.
基金supported by the Science and Technology Project of China Southern Power Grid Co.,Ltd.under Grant GDKJXM20222357.
文摘In recent times,the impact of typhoon disasters on integrated energy active distribution networks(IEADNs)has received increasing attention,particularly,in terms of effective cascading fault path prediction and enhanced fault recovery performance.In this study,we propose a modified ORNL-PSerc-Alaska(OPA)model based on optimal power flow(OPF)calculation to forecast IEADN cascading fault paths.We first established the topology and operational model of the IEADNs,and the typical fault scenario was chosen according to the component fault probability and information entropy.The modified OPA model consisted of two layers:An upper-layer model to determine the cascading fault location and a lower-layer model to calculate the OPF by using Yalmip and CPLEX and provide the data to update the upper-layer model.The approach was validated via the modified IEEE 33-node distribution system and two real IEADNs.Simulation results showed that the fault trend forecasted by the novel OPA model corresponded well with the development and movement of the typhoon above the IEADN.The proposed model also increased the load recovery rate by>24%compared to the traditional OPA model.