期刊文献+
共找到799篇文章
< 1 2 40 >
每页显示 20 50 100
Highly selective photocatalytic reduction of CO_(2) to CH_(4) on electron-rich Fe species cocatalyst under visible light irradiation 被引量:1
1
作者 Qianying Lin Jiwu Zhao +8 位作者 Pu Zhang Shuo Wang Ying Wang Zizhong Zhang Na Wen Zhengxin Ding Rusheng Yuan Xuxu Wang Jinlin Long 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期255-266,共12页
Efficient photocatalytic reduction of CO_(2) to high-calorific-value CH4,an ideal target product,is a blueprint for C_(1)industry relevance and carbon neutrality,but it also faces great challenges.Herein,we demonstrat... Efficient photocatalytic reduction of CO_(2) to high-calorific-value CH4,an ideal target product,is a blueprint for C_(1)industry relevance and carbon neutrality,but it also faces great challenges.Herein,we demonstrate unprecedented hybrid SiC photocatalysts modified by Fe-based cocatalyst,which are prepared via a facile impregnation-reduction method,featuring an optimized local electronic structure.It exhibits a superior photocatalytic carbon-based products yield of 30.0μmol g^(−1) h^(−1) and achieves a record CH_(4) selectivity of up to 94.3%,which highlights the effectiveness of electron-rich Fe cocatalyst for boosting photocatalytic performance and selectivity.Specifically,the synergistic effects of directional migration of photogenerated electrons and strongπ-back bonding on low-valence Fe effectively strengthen the adsorption and activation of reactants and intermediates in the CO_(2)→CH_(4) pathway.This study inspires an effective strategy for enhancing the multielectron reduction capacity of semiconductor photocatalysts with low-cost Fe instead of noble metals as cocatalysts. 展开更多
关键词 artificial synthesis of CH_(4) electronic structure optimization fe species cocatalyst photocatalytic CO_(2) reduction SiC
下载PDF
Mild polarization electric field in ultra-thin BN-Fe-graphene sandwich structure for efficient nitrogen reduction
2
作者 Ziyuan Xiu Wei Mu +1 位作者 Xin Zhou Xiaojun Han 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期126-137,共12页
The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are rest... The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst,correct electron transfer direction,and electron tunneling distance between bare electrode and active sites.By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method,an ultrathin sandwich catalyst,i.e.,Fe atoms(polarized electric field layer)sandwiched between ultrathin(within electron tunneling distance)BN(catalyst layer)and graphene film(conducting layer),is fabricated for electrocatalytic NRR.The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure.The sandwich electrocatalyst NRR system achieve NH3 yield of 8.9μg h^(−1)cm^(−2)and Faradaic Efficiency of 21.7%.The N_(2)adsorption,activation,and polarization electric field changes of three sandwich catalysts(BN-Fe-G,BN-Fe-BN,and G-Fe-G)during the electrocatalytic NRR are investigated by experiments and density functional theory simulations.Driven by applied voltage,the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR. 展开更多
关键词 Ultra-thin BN fe doping BN-fe-graphene Mild polarization electric field Nitrogen reduction reaction
下载PDF
Atomically dispersed Fe sites on hierarchically porous carbon nanoplates for oxygen reduction reaction
3
作者 Ruixue Zheng Qinglei Meng +9 位作者 Hao Zhang Teng Li Di Yang Li Zhang Xiaolong Jia Changpeng Liu Jianbing Zhu Xiaozheng Duan Meiling Xiao Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期7-15,I0002,共10页
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat... Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties. 展开更多
关键词 fe single atom catalysts Oxygen reduction reaction Mesoporous structure Active sites Zinc-air battery
下载PDF
Dissimilatory reduction of Fe^III (EDTA) with microorganisms in the system of nitric oxide removal from the flue gas by metal chelate absorption 被引量:3
4
作者 MABi-yao LIWei JINGGuo-hua SHIYao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第3期428-430,共3页
In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which are not capabl... In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which are not capable of binding NO. By adding iron metal or electrochemical method, Fe III (EDTA) can be reduced to Fe II (EDTA). However, there are various drawbacks associated with these techniques. The dissimilatory reduction of Fe III (EDTA) with microorganisms in the system of nitric oxide removal by metal chelate absorption was investigated. Ammonium salt instead of nitrate was used as the nitrogen source, as nitrates inhibited the reduction of Fe III due to the competition between the two electron acceptors. Supplemental glucose and lactate stimulated the formation of Fe II more than ethanol as the carbon sources. The microorganisms cultured at 50℃ were not very sensitive to the other experimental temperature, the reduction percentage of Fe III varied little with the temperature range of 30—50℃. Concentrated Na 2CO 3 solution was added to adjust the solution pH to an optimal pH range of 6—7 The overall results revealed that the dissimilatory ferric reducing microorganisms present in the mix culture are probably neutrophilic, moderately thermophilic Fe III reducers. 展开更多
关键词 dissimilatory ferric reducing microorganisms fe iii (EDTA) microbial reduction mix culture
下载PDF
Experimental study on the inhibition of biological reduction of Fe(III)EDTA in NO_x absorption solution 被引量:2
5
作者 李伟 吴成志 +2 位作者 张士汉 施耀 雷乐成 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2005年第10期1005-1008,共4页
Scrubbing of NOx from the gas phase with Fe(II)EDTA has been shown to be highly effective. A new biological method can be used to convert NO to N2 and regenerate the chelating agent Fe(II)EDTA for continuous NO absorp... Scrubbing of NOx from the gas phase with Fe(II)EDTA has been shown to be highly effective. A new biological method can be used to convert NO to N2 and regenerate the chelating agent Fe(II)EDTA for continuous NO absorption. The core of this biological regeneration is how to effectively simultaneous reduce Fe(III)EDTA and Fe(II)EDTA-NO, two mainly products in the ferrous chelate absorption solution. The biological reduction rate of Fe(III)EDTA plays a main role for the NOx removal efficiency. In this paper, a bacterial strain identified as Klebsiella Trevisan sp. was used to demonstrate an inhibition of Fe(III)EDTA reduction in the presence of Fe(II)EDTA-NO. The competitive inhibition experiments indicted that Fe(II)EDTA-NO inhibited not only the growth rate of the iron-reduction bacterial strain but also the Fe(III)EDTA reduction rate. Cell growth rate and Fe(III)EDTA reduction rate decreased with increasing Fe(II)EDTA-NO concentration in the solution. 展开更多
关键词 Biological reduction fe(iii)EDTA NOx INHIBITION
下载PDF
Non-isothermal reduction kinetics of Fe_2O_3-NiO composites for formation of Fe-Ni alloy using carbon monoxide 被引量:3
6
作者 李博 魏永刚 王华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3710-3715,共6页
The non-isothermal reduction kinetics and mechanism of Fe2O3-NiO composites with different Fe2O3-NiO compacts using carbon monoxide as reductant were investigated. The results show that the reduction degree increases ... The non-isothermal reduction kinetics and mechanism of Fe2O3-NiO composites with different Fe2O3-NiO compacts using carbon monoxide as reductant were investigated. The results show that the reduction degree increases rapidly with increasing the content of NiO, and the presence of NiO also improves the reduction rate of iron oxides. It is found that NiO is preferentially reduced at the beginning of the reactions, and then the metallic Ni acts as a catalyst promoting the reduction rate of iron oxides. It is also observed that the increase of the Ni O content enhances the formation of awaruite(FeNi3) but decreases the percentage of kamacite(Fe,Ni) and taenite(Fe,Ni). The particle size of the materials tends to be uniform during the reduction process due to the presence of metallic nickel, metallic iron and the formation of Fe-Ni alloy. The concentration of CO in the product gas is greater than that of CO2 at the beginning of the reaction and then slows down. The fastest reduction rate of Fe2O3-NiO composites with CO appears at 400-500 °C, and nucleation growth model can be used to elucidate the reduction mechanism. Nucleation growth process is found to be the rate controlling step when the temperature is lower than 1000 °C. 展开更多
关键词 reduction kinetics fe2O3 NIO fe-Ni alloy carbon monoxide
下载PDF
Fe-Beta zeolite for selective catalytic reduction of NO_x with NH_3:Influence of Fe content 被引量:11
7
作者 夏岩 詹望成 +2 位作者 郭耘 郭杨龙 卢冠忠 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2069-2078,共10页
Fe doped Beta zeolite with different Fe contents were prepared by ion exchange by changing the volume or the concentration of a Fe salt solution. For a particular mass of Fe salt precursor, the concentration of the me... Fe doped Beta zeolite with different Fe contents were prepared by ion exchange by changing the volume or the concentration of a Fe salt solution. For a particular mass of Fe salt precursor, the concentration of the metal salt solution during ion exchange influenced the ion exchange capacity of Fe, and resulted in different activities of the Fe-Beta catalyst. Fe-Beta catalysts with the Fe contents of (2.6, 6.3 and 9) wt% were synthesized using different amounts of 0.02 mol/L Fe salt solution. These catalysts were studied by various characterization techniques and their NH3-SCR activities were evaluated. The Fe-Beta catalyst with the Fe content of 6.3 wt% exhibited the highest activity, with a temperature range of 202-616℃ where the NOx conversion was 〉 80%. The Fe content in Beta zeolite did not influence the structure of Beta zeolite and valence state of Fe. Compared with the Fe-Beta catalysts with low Fe content (2.6 wt%), Fe-Beta catalysts with 6.3 wt% Fe content possessed more isolated Fe3. active sites which led to its higher NH3-SCR activity. A high capacity for NH3 and NO adsorption, and a high activity for NO oxidation also contributed to the high NH3-SCR activity of the Fe-Beta catalyst with 6.3 wt%. However, when the Fe content was further increased to 9.0 wt%, the amount of FexOy nanoparticles increased while the amount of isolated Fe3+ active sites was unchanged, which promoted NH3 oxidation and decreased the NH3-SCR activity at high temperature. 展开更多
关键词 Beta zeoliteSelective catalytic reduction fe contentfe species Ion exchange
下载PDF
Dissimilatory Fe(Ⅲ) reduction characteristics of paddy soil extract cultures treated with glucose or fatty acids 被引量:25
8
作者 HE Jiangzhou1,2, QU Dong1, 1. College of Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China.2. Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, Xinjiang Uygur Autonomous Region, Xinjiang 843300, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第9期1103-1108,共6页
Dissimilatory Fe(Ⅲ) reduction is a universal process with irreplaceable biological and environmental importance in anoxic environments. Our knowledge about Fe(Ⅲ) reduction predominantly comes from pure cultures of d... Dissimilatory Fe(Ⅲ) reduction is a universal process with irreplaceable biological and environmental importance in anoxic environments. Our knowledge about Fe(Ⅲ) reduction predominantly comes from pure cultures of dissimilatory Fe(Ⅲ) reducing bacteria (DFRB). The objective of this study was to compare the effects of glucose and a selection of short organic acids (citrate, succinate, pyruvate, propionate, acetate, and formate) on Fe(Ⅲ) reduction via the anaerobic culture of three paddy soil solutions with Fe... 展开更多
关键词 dissimilatory fe(Ⅲ) reduction GLUCOSE organic acid anaerobic incubation
下载PDF
Comparison of reduction behavior of Fe_2O_3, ZnO and ZnFe_2O_4 by TPR technique 被引量:32
9
作者 Meisheng Liang Wenkai Kang Kechang Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期110-113,共4页
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasif... Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier gas to very low levels. As a sort of effective desufurizer, such as Fe2O3, ZnO and ZnFe2O4, it will endure strong reducing atmosphere in desulfurization process. The reduced degree of desufurizer can have an effect on its desulfurization reactivity. In this paper, Fe2O3, ZnO and ZnFe2O4 were synthesized by precipitation or co-precipitation at constant pH. After aging, washing and drying, the solids were calcined at 800℃. The reduction behaviors of sample were characterized by temperature-programmed reduction (TPR). It is found that there are two reduction peaks for Fe2O3 in TPR, and whereas no reduction peaks for ZnO are found. The reduction process of ZnFe2O4 prepared by co-precipitation is different from that of Fe2O3. ZnFe2O4 is easier to be reduced than Fe2O3. The activation energy of reduction process for Fe2O3 and ZnFe2O4 is obtained at different reduction periods. 展开更多
关键词 fe2O3 ZNfe2O4 ZNO reduction behavior TPR
下载PDF
Effect of Fe(Ⅲ) on the bromate reduction by humic substances in aqueous solution 被引量:4
10
作者 XIE Li SHANG Chii ZHOU Qi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第3期257-261,共5页
Humic substances are ubiquitous redox-active organic compounds of environment. In this study, experiments were conducted to determine the reduction capacity of humic acid in the man-ix of bromate and Fe(Ⅲ) solution... Humic substances are ubiquitous redox-active organic compounds of environment. In this study, experiments were conducted to determine the reduction capacity of humic acid in the man-ix of bromate and Fe(Ⅲ) solutions and the role of Fe(Ⅲ) in this redox process. The results showed that the humic acid regenerated Fe(Ⅱ) and reduced bromate abiotically. The addition of Fe(Ⅲ) could accelerate the bromate reduction rate by forming humic acid-Fe(Ⅲ) complexes. Iron species acts as electron mediator and catalyst for the bromate reduction by humic acid, in which humic acid transfers electrons to the complexed Fe(Ⅲ) to form Fe(Ⅱ), and the regenerated Fe(Ⅱ) donate the electrons to bromate. The kinetics study on bromate reduction further indicated that bromate reduction by humic acid-Fe(Ⅲ) complexes is pH dependent. The rate decreased by 2-fold with the increase in solution pH by one unit. The reduction capacity of Aldrich humic acid was observed to be lower than that of humic acid or natural organic matter of Suwanne River, indicating that such redox process is expected to occur in the environment. 展开更多
关键词 humic acid fe(Ⅲ) ion bromate reduction electron mediator
下载PDF
Reaction behavior of kaolinite with ferric oxide during reduction roasting 被引量:20
11
作者 Xiao-bin LI Hong-yang WANG +4 位作者 Qiu-sheng ZHOU Tian-gui QI Gui-hua LIU Zhi-hong PENG Yi-lin WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第1期186-193,共8页
The pre-separation of silica and alumina in aluminosilicates is of great significance for efficiently treating alumina-/ silica-bearing minerals for alumina production. In this work, the reaction behavior of kaolinite... The pre-separation of silica and alumina in aluminosilicates is of great significance for efficiently treating alumina-/ silica-bearing minerals for alumina production. In this work, the reaction behavior of kaolinite with ferric oxide during reduction roasting was investigated. The results of thermodynamic analyses and reduction roasting experiments show that ferrous oxide obtained from ferric oxide reduction preferentially reacts with alumina in kaolinite to form hercynite, meanwhile the silica in kaolinite is transformed into quartz solid solution and/or cristobalite solid solution. With increasing roasting temperature, fayalite formed by reaction of surplus ferrous oxide with silica at low temperature is reduced to silica and metallic iron in the presence of sufficient carbon dosage. However, increasing roasting temperature and decreasing Fe2O3/Al2O3 molar ratio favor mullite formation. The complete conversion of kaolinte into free silica and hercynite can be obtained by roasting raw meal of kaolin, ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 at 1373 K for 60 min. This work may facilitate the development of a technique for comprehensively utilizing silica and alumina in aluminosilicates. 展开更多
关键词 KAOLIN fe2O3 HERCYNITE quartz solid solution cristobalite solid solution reduction roasting
下载PDF
Low-Temperature Selective Catalytic Reduction of NO with NH_3 over Fe–Ce–O_x Catalysts 被引量:5
12
作者 Yan Sun Ying Guo +1 位作者 Wei Su Yajuan Wei 《Transactions of Tianjin University》 EI CAS 2017年第1期35-42,共8页
In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of ... In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance. 展开更多
关键词 fe-Ce-O x Low-temperature selective catalytic reduction fe/Ce molar ratio Gas hourly space velocity Stability SO2/H2O resistance
下载PDF
Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery 被引量:7
13
作者 Xue Zhao Xue Li +7 位作者 Zenghui Bi Yuwen Wang Haibo Zhang Xiaohai Zhou Quan Wang Yingtang Zhou Huaisheng Wang Guangzhi Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期514-524,I0014,共12页
The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−... The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity. 展开更多
关键词 Single-atom fe B-doped CN Oxygen reduction reaction Zn-air battery Electronic modulation
下载PDF
Enhanced photocatalytic Cr(Ⅵ) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C_3N_4 heterojunctions 被引量:16
14
作者 Xuedong Du Xiaohong Yi +2 位作者 Peng Wang Jiguang Deng Chong‐chen Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第1期70-79,共10页
Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and charact... Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs. 展开更多
关键词 MIL‐100(fe) g‐C3N4 HETEROJUNCTION Cr(VI)reduction Diclofenac sodium
下载PDF
Effect of Mn addition and refining process on Fe reduction of Mg−Mn alloys made from magnesium scrap 被引量:5
15
作者 Dong-dong GU Jia-wen WANG +1 位作者 Yu-bin CHEN Jian PENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2941-2951,共11页
The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs d... The Fe reduction,microstructure evolution and corrosion susceptibility of Mg−Mn alloys made from magnesium scrap refining with Mn addition were investigated.The results show that significant Fe content change occurs during near-solid-melt treatment(NSMT)process even in the absence of Mn,because of the high saturation of Fe in the melt.Furthermore,in the NSMT process,even a small amount of Mn addition can lead to a sharp deposition of Mn atoms.The NSMT process can increase the growth rate of the Fe-rich particles,and then accelerate their sinking movement.Nevertheless,the addition of Mn hinders the coarsening process of Fe-rich particles.Besides,the corrosion susceptibility of the alloys is mainly affected by the solubility of Fe,which can be significantly reduced by Mn addition.Moreover,the presence of more Fe-rich particles does not necessarily increase the corrosion susceptibility of the alloy.Consequently,in the refining process of Mg−Mn alloys made from magnesium scrap,on the basis of NSMT process and adding an appropriate Mn content(about 0.5 wt.%),the purity of the melt can be improved,thereby obtaining an alloy with excellent corrosion resistance. 展开更多
关键词 fe reduction melt refining process magnesium scrap fe-rich particle corrosion susceptibility
下载PDF
Solid phase microwave-assisted fabrication of Fe-doped ZIF-8 for single-atom Fe-N-C electrocatalysts on oxygen reduction 被引量:4
16
作者 Xinlong Xu Xiaoming Zhang +6 位作者 Zhangxun Xia Ruili Sun Huanqiao Li Junhu Wang Shansheng Yu Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期579-586,共8页
Fe-N-C endowed with inexpensiveness,high activity,and excellent anti-poisoning power have emerged as promising candidate catalysts for oxygen reduction reaction(ORR).Single-atom Fe-N-C electrocatalysts derived from Fe... Fe-N-C endowed with inexpensiveness,high activity,and excellent anti-poisoning power have emerged as promising candidate catalysts for oxygen reduction reaction(ORR).Single-atom Fe-N-C electrocatalysts derived from Fe-doped ZIF-8 represent the top-level ORR performance.However,the current fabrication of Fe-doped ZIF-8 relies on heavy consumption of time,energy,cost and organic solvents.Herein,we develop a rapid and solvent-free method to produce Fe-doped ZIF-8 under microwave irradiation,which can be easily amplified in combination with ball-milling.After rational pyrolysis,Fe-N-C catalysts with atomic FeN4 sites well dispersed on the hierarchically porous carbon matrix are obtained,which exhibit exceptional ORR performance with a half-wave potential of 0.782 V(vs.reversible hydrogen electrode(RHE))and brilliant methanol tolerance.The assembled direct methanol fuel cells(DMFCs)endow a peak power density of 61 mW cm^(-2) and extraordinary stability,highlighting the application perspective of this strategy. 展开更多
关键词 Microwave-assistant Zeolitic imidazolate framework-8 fe single atoms ELECTROCATALYSTS Oxygen reduction reaction
下载PDF
REDUCTION OF FERRIC IRON IN THE TITANIUM SULFATE SOLUTION BY THE ION EXCHANGE MEMBRANE PRIMARY CELL METHOD 被引量:1
17
作者 Li Qinggang Zhou Kanggen Zhang Guiqing Zhang Qixiou (Department of Metallurgical Science and Engineering, Central South University of Technology, Changsha 410083,China) 《Journal of Central South University》 SCIE EI CAS 1999年第2期90-94,共5页
In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem ... In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem because it is difficult to guarantee the quality of the iron scraps. In this research, a new method, called the ion exchange membrane primary cell method, for reduction of Fe 3+ in the titanium sulfate solution has been advanced. The positive compartment of the primary cell consists of lead (copper) electrode and the titanium sulfate solution, and the negative compartment consists of iron electrode and acidic FeSO 4 solution. The anion ion exchange membrane is used as the diaphragm between two compartments. Fe 3+ in the titanium sulfate solution is reduced by the electric discharge of the primary cell. The effects of temperature, stirring strength of the solution and membrane area on the reduction rate have been investigated. The experimental result shows that the optimum current density can be higher than 100 A/m 2. 展开更多
关键词 PRIMARY cell ION EXCHANGE MEMBRANE fe 3+ reduction TITANIUM dioxide
下载PDF
High efficient oxygen reduction performance of Fe/Fe3C nanoparticles in situ encapsulated in nitrogen-doped carbon via a novel microwave-assisted carbon bath method 被引量:1
18
作者 Mincong Liu Xue Yin +7 位作者 Xuhong Guo Libing Hu Huifang Yuan Gang Wang Fu Wang Long Chen Lili Zhang Feng Yu 《Nano Materials Science》 CAS 2019年第2期131-136,共6页
Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still car... Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too. 展开更多
关键词 fe/fe3C NANOPARTICLES Prussian blue Microwave CARBON BATH METHOD Oxygen reduction reaction
下载PDF
Inducing Fe 3d Electron Delocalization and Spin‑State Transition of FeN_(4) Species Boosts Oxygen Reduction Reaction for Wearable Zinc–Air Battery 被引量:3
19
作者 Shengmei Chen Xiongyi Liang +7 位作者 Sixia Hu Xinliang Li Guobin Zhang Shuyun Wang Longtao Ma Chi‑Man Lawrence Wu Chunyi Zhi Juan Antonio Zapien 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期23-39,共17页
Transition metal-nitrogen-carbon materials(M-N-Cs),particularly Fe-N-Cs,have been found to be electroactive for accelerating oxygen reduction reaction(ORR)kinetics.Although substantial efforts have been devoted to des... Transition metal-nitrogen-carbon materials(M-N-Cs),particularly Fe-N-Cs,have been found to be electroactive for accelerating oxygen reduction reaction(ORR)kinetics.Although substantial efforts have been devoted to design Fe-N-Cs with increased active species content,surface area,and electronic conductivity,their performance is still far from satisfactory.Hitherto,there is limited research about regulation on the electronic spin states of Fe centers for Fe-N-Cs electrocatalysts to improve their catalytic performance.Here,we introduce Ti_(3)C_(2) MXene with sulfur terminals to regulate the electronic configuration of FeN_(4) species and dramatically enhance catalytic activity toward ORR.The MXene with sulfur terminals induce the spin-state transition of FeN_(4) species and Fe 3d electron delocalization with d band center upshift,enabling the Fe(II)ions to bind oxygen in the end-on adsorption mode favorable to initiate the reduction of oxygen and boosting oxygen-containing groups adsorption on FeN_(4) species and ORR kinetics.The resulting FeN_(4)-Ti_(3)C_(2)Sx exhibits comparable catalytic performance to those of commercial Pt-C.The developed wearable ZABs using FeN_(4)-Ti_(3)C_(2)Sx also exhibit fast kinetics and excellent stability.This study confirms that regulation of the electronic structure of active species via coupling with their support can be a major contributor to enhance their catalytic activity. 展开更多
关键词 fe 3d electron delocalization Spin-state transition Oxygen reduction reaction Wearable zinc-air batteries
下载PDF
Boost oxygen reduction reaction performance by tuning the active sites in Fe-N-P-C catalysts 被引量:2
20
作者 Yahao Li Ketao Zang +2 位作者 Xuezhi Duan Jun Luo De Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期572-579,共8页
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge ... Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and Fe_(x)P particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of Fe_(x)P particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn^(-1),a power density of 92.9 m W cm^(-2) at 137 m A cm^(-2) and an excellent durability were exhibited. 展开更多
关键词 Oxygen reduction reaction fe electrocatalyst Atomically dispersed active center Activity tuning Zn-air battery
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部