Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and exten...Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe展开更多
The effect of incorporating limited-diffusivity elements such as Fe and Ti on thermal stability of the nanocrystalline Al alloy was investigated.Al−10wt.%Fe and Al−10wt.%Fe−5wt.%Ti alloys were fabricated.The initial m...The effect of incorporating limited-diffusivity elements such as Fe and Ti on thermal stability of the nanocrystalline Al alloy was investigated.Al−10wt.%Fe and Al−10wt.%Fe−5wt.%Ti alloys were fabricated.The initial mixtures of powders were milled for 100 h in vacuum.The bulk samples were fabricated from the milled powders in a high frequency induction heat sintering(HFIHS)system.The milled powders and the bulk sintered samples were characterized by X-ray diffraction(XRD),Vickers microhardness,field emission scanning electron microscopy(FESEM-EDS)and transmission electron microscopy(TEM).The observations indicated that Fe and Ti were completely dispersed in the matrix to form a supersaturated solid solution(SSSS)with Al.Additionally,the inclusion of alloying elements led to an increase in hardness and yield strength of the alloy by 127%and 152%,respectively.The elevated temperature compression tests were carried out to evaluate the thermal stability of the alloys.The Al−10wt.%Fe−5wt.%Ti alloy revealed the optimum thermally stable behavior of the three alloys studied.The incorporation of Fe and Ti improved the thermal stability of the developed alloys through inhibiting the grain growth,hindering dissolution and growth of second phases(such as Al13Fe4 and Al13Ti),and forming a stable solid solution.展开更多
The formation of nonequilibrium phase by mechanical alloying (MA) of Fe and B powders in a high energy vibration ball mill has been made for Fe100-xBx system with x=15. 30, 35, 45,55 and 70. By using the X-ray diffrac...The formation of nonequilibrium phase by mechanical alloying (MA) of Fe and B powders in a high energy vibration ball mill has been made for Fe100-xBx system with x=15. 30, 35, 45,55 and 70. By using the X-ray diffraction, magnetic measurement and M6ssbauer spectrummethods, it was revealed that the structure of the MA product varies with milling time and B contents.展开更多
By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L...By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.展开更多
The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardn...The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2.展开更多
Cu−Fe alloys with different Fe contents were prepared by vacuum hot pressing.After hot rolling and aging treatment,the effects of Fe content on microstructure,mechanical properties and electrical conductivity of Cu−Fe...Cu−Fe alloys with different Fe contents were prepared by vacuum hot pressing.After hot rolling and aging treatment,the effects of Fe content on microstructure,mechanical properties and electrical conductivity of Cu−Fe alloys were studied.The results show that,when w(Fe)<60%,the dynamic recrystallization extent of both Cu phase and Fe phase increases.When w(Fe)≥60%,Cu phase is uniformly distributed into the Fe phase and the deformation of alloy is more uniform.With the increase of the Fe content,the tensile strength of Cu−5wt.%Fe alloy increases from 305 MPa to 736 MPa of Cu−70wt.%Fe alloy,the elongation decreases from 23%to 17%and the electrical conductivity decreases from 31%IACS to 19%IACS.These results provide a guidance for the composition and processing design of Cu−Fe alloys.展开更多
The microstructure and properties of the 93W-4Ni-2Co-1Fe(mass fraction,%) tungsten heavy alloys prepared by mechanical alloying and electric current activated sintering from mixed elemental powders were investigated.A...The microstructure and properties of the 93W-4Ni-2Co-1Fe(mass fraction,%) tungsten heavy alloys prepared by mechanical alloying and electric current activated sintering from mixed elemental powders were investigated.After 15 h milling,the average W grain size in the powders is decreased to 120 nm.For the powders milled for 15 h,the density,hardness and transverse rupture strength of the alloys sintered only by an intensive pulse electric current are the maximum.When the total sintering time keeps constant,the properties of the sintered alloys can be obviously improved by optimizing the sintering time of pulse-and constant-currents.A bulk ultrafine alloy with an average W grain size of about 340 nm can be obtained by sintering 15 h-milled powders in a total sintering time of 6 min.The corresponding sintered density,hardness and transverse rupture strength reach 16.78 g /cm3,HRA84.3 and 968 MPa,respectively.展开更多
Taking a Ti−5Al−5Mo−5V−1Cr−1Fe alloy as exemplary case,the fatigue crack growth sensitivity and fracture features with various tailoredαphase morphologies were thoroughly investigated using fatigue crack growth rate(...Taking a Ti−5Al−5Mo−5V−1Cr−1Fe alloy as exemplary case,the fatigue crack growth sensitivity and fracture features with various tailoredαphase morphologies were thoroughly investigated using fatigue crack growth rate(FCGR)test,optical microscopy(OM)and scanning electron microscopy(SEM).The tailored microstructures by heat treatments include the fine and coarse secondaryαphase,as well as the widmanstatten and basket weave features.The sample with coarse secondaryαphase exhibits better comprehensive properties of good crack propagation resistance(with long Paris regime ranging from 15 to 60 MPa·m1/2),high yield strength(1113 MPa)and ultimate strength(1150 MPa),and good elongation(11.6%).The good crack propagation resistance can be attributed to crack deflection,long secondary crack,and tortuous crack path induced by coarse secondaryαphase.展开更多
In this paper the tensile properties of both ordered and disordered Ni-24Fe and Ni-24Fe-0.03%B (wt%) alloys in gaseous hydrogen was investigated. The result shows that the ductility of the disordered Ni3Fe is signif...In this paper the tensile properties of both ordered and disordered Ni-24Fe and Ni-24Fe-0.03%B (wt%) alloys in gaseous hydrogen was investigated. The result shows that the ductility of the disordered Ni3Fe is significantly larger than that of ordered material in gaseous hydrogen. However, the ductility of ordered Ni3Fe doped with 0.03%B is nearly the same as that of disordered one indicating the obvious suppressing effect of boron on the H2-induced embrittlement. Based on the segregation behavior of boron in Ni3A1, it is proposed that the suppressing effect of boron in Ni3Fe on the H2-induced embrittlement is attributed to the segregation of boron on grain boundaries, thereby reducing the hydrogen diffusivity along the grain boundaries.展开更多
The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermod...The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.展开更多
Ce element was introduced to modify Al−2%Fe(mass fraction)binary alloy.The microstructures,crystallization behavior,electrical/thermal conductivities and mechanical properties of these alloys were systematically inves...Ce element was introduced to modify Al−2%Fe(mass fraction)binary alloy.The microstructures,crystallization behavior,electrical/thermal conductivities and mechanical properties of these alloys were systematically investigated.The results indicated that the appropriate Ce addition decreased the recalescence temperature and growth temperature of Al−Fe eutectic structure,improved the morphology and distribution of Fe-containing phase,and simultaneously increased the conductivity and mechanical properties.The annealed treatment improved the thermal conductivity of these alloys due to the decreasing concentration of point defects.Rolling process further broke up the coarser Fe-containing phases into finer particles and made the secondary phases uniformly distributed in theα(Al)matrix.After subsequent annealing treatment and rolling deformation,the thermal conductivity,ultimate tensile strength and hardness of the Al−2%Fe−0.3%Ce(mass fraction)alloy reached 226 W/(m·K),(182±1.4)MPa and HBW(49.5±1.7),respectively.展开更多
The isothermal corrosion testing, microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied. The corrosion of Fe3Si alloy in...The isothermal corrosion testing, microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied. The corrosion of Fe3Si alloy in molten zinc was controlled by attacking the grain boundaries preferentially. Aluminum reacted with iron of Fe3Si alloy firstly while the samples were immersed in molten zinc, although aluminum contents in the molten zinc were very low. The phase of reaction product was thought to be Fe2Al5. The corrosion rate of the Fe3Si alloy in molten zinc was determined to be approximately 2.9×10^-3 mm/h, therefore the liquid zinc corrosion resistance of Fe3Si alloy was very weak.展开更多
The Fe−Ni−TiO_(2) nanocomposite coatings were electrodeposited by pulse frequency variation.The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at h...The Fe−Ni−TiO_(2) nanocomposite coatings were electrodeposited by pulse frequency variation.The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies.By increasing the pulse frequency from 10 to 500 Hz,the iron and TiO_(2) nanoparticles contents were increased in expense of nickel content.XRD patterns showed that by increasing the frequency to 500 Hz,an enhancement of BCC phase was observed and the grain size of deposits was reduced to 35 nm.The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO_(2) nanoparticles into the Fe−Ni matrix(5.13 wt.%).Moreover,the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.展开更多
Manuscript received 24 June 1999 The Fe Al P alloy deposits were plated on copper sheets by electroless plating. The change law of the deposition rate, composition, surface appearance and structure for the depo...Manuscript received 24 June 1999 The Fe Al P alloy deposits were plated on copper sheets by electroless plating. The change law of the deposition rate, composition, surface appearance and structure for the deposits was studied by changing the metallic salt ratios (AlCl 3/AlCl 3+FeSO 4), the concentration of metallic salt AlCl 3 and reductant NaH 2PO 2. The optimum plating bath was obtained. It was found that the choices of ligand and reductant were the key of increasing Al content for the deposits.展开更多
The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe 2+ and La 3+ in FeCl 2 LiCl DMSO and LaCl 3 LiCl DMSO systems on Pt, Cu and Ni cathodes. Th...The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe 2+ and La 3+ in FeCl 2 LiCl DMSO and LaCl 3 LiCl DMSO systems on Pt, Cu and Ni cathodes. The electroreduction of Fe 2+ to Fe is irreversible in one step,while the electroreduction of La 3+ to La is quasi reversible. The diffusion coefficient of La 3+ in LaCl 3 LiCl DMSO system at 298 K was 3 1×10 -6 cm 2·s -1 . The diffusion coefficient and transfer coefficient of Fe 2+ in FeCl 2 LiCl DMSO system at 298 K were 2 54×10 -6 cm 2·s -1 and 0 24, respectively. La Fe alloy films containing La from 22 7% to 37 1% (mass fraction) were prepared by potentiostatic electrolysis on Cu substrates at a deposition potential from -1 750 to -2 450 V (vs SCE). The fine La Fe alloy films were also obtained by pulse electrolysis at a pulse current densities from 2 to 6 mA·cm -2 . The surfaces of these alloy films are smooth, adhesive and uniform, and have metallic luster.展开更多
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser...To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.展开更多
Fine finishing of tungsten alloy is required to improve the surface quality of molds and precision instruments. Nevertheless, it is difficult to obtain high-quality surfaces as a result of grain boundary steps attribu...Fine finishing of tungsten alloy is required to improve the surface quality of molds and precision instruments. Nevertheless, it is difficult to obtain high-quality surfaces as a result of grain boundary steps attributed to differences in properties of two-phase microstructures. This paper presents a theoretical and experimental investigation on chemical mechanical polishing of W–Ni–Fe alloy. The mechanism of the boundary step generation is illustrated and a model of grain boundary step formation is proposed. The mechanism reveals the effects of mechanical and chemical actions in both surface roughness and material removal. The model was verified by the experiments and the results show that appropriately balancing the mechanical and chemical effects restrains the generation of boundary steps and leads to a fine surface quality with a high removal rate by citric acid-based slurry.展开更多
The behaviour of the pre bainitic transformation in Fe Ni alloy was investigated by using SAM, X ray diffraction and TEM. The results show that there is segregation of Ni atoms in austenite and that bainite forms i...The behaviour of the pre bainitic transformation in Fe Ni alloy was investigated by using SAM, X ray diffraction and TEM. The results show that there is segregation of Ni atoms in austenite and that bainite forms in depleted regions of Ni atoms.展开更多
This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their appl...This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their applications as high-temperature wear resistant mechanical parts.Additionally,the wear mechanism of alloys is evaluated.The tribological properties of alloys are systematically studied by using a ball-on-disc tribometer at 10 N and 0.20 m/s from RT to 800°C sliding against Si3N4 ceramic ball.The boron element greatly improves the wear resistance of specimens as compared with that of unreinforced specimen.The friction coefficients of specimens decrease with increasing of testing temperature.The wear rates of Fe-Cr-B alloys decrease firstly and then raise with the increase of boron content.The specific wear rates of specimens with boron are 1/10 of the unreinforced specimen.Fe-21wt%Cr-7wt%B keeps the best tribological properties at high temperature.展开更多
A novel process of electroplating amorphous Fe Cr Ni alloy in chloride aqueous solution with Fe(Ⅱ), Ni(Ⅱ) and Cr(Ⅲ) was reported. Couple plasma atomic emission spectrometry (ICP AES), X ray diffractometry(XRD), sca...A novel process of electroplating amorphous Fe Cr Ni alloy in chloride aqueous solution with Fe(Ⅱ), Ni(Ⅱ) and Cr(Ⅲ) was reported. Couple plasma atomic emission spectrometry (ICP AES), X ray diffractometry(XRD), scanning electronic microscopy(SEM), microhardness test and rapid heating cooling method were adopted to detect the properties of the amorphous Fe Ni Cr deposit, such as composition, crystalline structure, micrograph, hardness, and adherence between deposit and substrate. The effects of the operating parameters on the electrodeposit of the amorphous Fe Ni Cr alloy were discussed in detail. The results show that a 8.7?μm thick mirror like amorphous Fe Ni Cr alloy deposit, with Vicker’s hardness of 530 and composition of 45%~55% Fe, 33%~37% Ni, 9%~23% Cr was obtained by electroplating for 20?min at room temperature(10~30?℃), cathode current 10~16?A/dm 2, pH=1.0~3.0. The XRD patterns show that there only appears a broad hump around 2 θ of 41?°~47?°for the amorphous Fe Ni Cr alloy deposit, while the SEM micrographs show that the deposit contains only a few fine cracks but no pinholes.展开更多
文摘Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe
文摘The effect of incorporating limited-diffusivity elements such as Fe and Ti on thermal stability of the nanocrystalline Al alloy was investigated.Al−10wt.%Fe and Al−10wt.%Fe−5wt.%Ti alloys were fabricated.The initial mixtures of powders were milled for 100 h in vacuum.The bulk samples were fabricated from the milled powders in a high frequency induction heat sintering(HFIHS)system.The milled powders and the bulk sintered samples were characterized by X-ray diffraction(XRD),Vickers microhardness,field emission scanning electron microscopy(FESEM-EDS)and transmission electron microscopy(TEM).The observations indicated that Fe and Ti were completely dispersed in the matrix to form a supersaturated solid solution(SSSS)with Al.Additionally,the inclusion of alloying elements led to an increase in hardness and yield strength of the alloy by 127%and 152%,respectively.The elevated temperature compression tests were carried out to evaluate the thermal stability of the alloys.The Al−10wt.%Fe−5wt.%Ti alloy revealed the optimum thermally stable behavior of the three alloys studied.The incorporation of Fe and Ti improved the thermal stability of the developed alloys through inhibiting the grain growth,hindering dissolution and growth of second phases(such as Al13Fe4 and Al13Ti),and forming a stable solid solution.
文摘The formation of nonequilibrium phase by mechanical alloying (MA) of Fe and B powders in a high energy vibration ball mill has been made for Fe100-xBx system with x=15. 30, 35, 45,55 and 70. By using the X-ray diffraction, magnetic measurement and M6ssbauer spectrummethods, it was revealed that the structure of the MA product varies with milling time and B contents.
文摘By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.
基金financial supports from the Department of Science and Technology and other Provincial and Ministerial Level Projects,China(No.204306800086)Science and Technology Projects of Ganzhou Science and Technology Bureau,China(No.204301000194)the Science and Technology Project of Jiangxi Provincial Department of Education,China(No.204201400853)。
文摘The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2.
基金financial supports from the National Natural Science Foundation of China (No.51974375)Key Project of "Technology Innovation 2025",Ningbo,China(No.2018B10030)+2 种基金Technology Research Program of Shenzhen,China (No.JSGG20170824162647398)Project of State Key Laboratory of Powder Metallurgy,Central South University,ChinaYoung People Fund of Jiangxi province,China (No.2018BAB216005.
文摘Cu−Fe alloys with different Fe contents were prepared by vacuum hot pressing.After hot rolling and aging treatment,the effects of Fe content on microstructure,mechanical properties and electrical conductivity of Cu−Fe alloys were studied.The results show that,when w(Fe)<60%,the dynamic recrystallization extent of both Cu phase and Fe phase increases.When w(Fe)≥60%,Cu phase is uniformly distributed into the Fe phase and the deformation of alloy is more uniform.With the increase of the Fe content,the tensile strength of Cu−5wt.%Fe alloy increases from 305 MPa to 736 MPa of Cu−70wt.%Fe alloy,the elongation decreases from 23%to 17%and the electrical conductivity decreases from 31%IACS to 19%IACS.These results provide a guidance for the composition and processing design of Cu−Fe alloys.
基金Project(2007CB616905) supported by the National Basic Research Program of ChinaProject(2007AA03Z112) supported by the National High-tech Research and Development Program of China+1 种基金Project(x2jqB6080210) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(9140A18040709JW1601) supported by the Advanced Research Fund of Department of Defense,China
文摘The microstructure and properties of the 93W-4Ni-2Co-1Fe(mass fraction,%) tungsten heavy alloys prepared by mechanical alloying and electric current activated sintering from mixed elemental powders were investigated.After 15 h milling,the average W grain size in the powders is decreased to 120 nm.For the powders milled for 15 h,the density,hardness and transverse rupture strength of the alloys sintered only by an intensive pulse electric current are the maximum.When the total sintering time keeps constant,the properties of the sintered alloys can be obviously improved by optimizing the sintering time of pulse-and constant-currents.A bulk ultrafine alloy with an average W grain size of about 340 nm can be obtained by sintering 15 h-milled powders in a total sintering time of 6 min.The corresponding sintered density,hardness and transverse rupture strength reach 16.78 g /cm3,HRA84.3 and 968 MPa,respectively.
基金Project(U1867201)supported by the National Natural Science Foundation of ChinaProject supported by State Key Laboratory of Powder Metallurgy,Central South University,China。
文摘Taking a Ti−5Al−5Mo−5V−1Cr−1Fe alloy as exemplary case,the fatigue crack growth sensitivity and fracture features with various tailoredαphase morphologies were thoroughly investigated using fatigue crack growth rate(FCGR)test,optical microscopy(OM)and scanning electron microscopy(SEM).The tailored microstructures by heat treatments include the fine and coarse secondaryαphase,as well as the widmanstatten and basket weave features.The sample with coarse secondaryαphase exhibits better comprehensive properties of good crack propagation resistance(with long Paris regime ranging from 15 to 60 MPa·m1/2),high yield strength(1113 MPa)and ultimate strength(1150 MPa),and good elongation(11.6%).The good crack propagation resistance can be attributed to crack deflection,long secondary crack,and tortuous crack path induced by coarse secondaryαphase.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50371050, 50671057)
文摘In this paper the tensile properties of both ordered and disordered Ni-24Fe and Ni-24Fe-0.03%B (wt%) alloys in gaseous hydrogen was investigated. The result shows that the ductility of the disordered Ni3Fe is significantly larger than that of ordered material in gaseous hydrogen. However, the ductility of ordered Ni3Fe doped with 0.03%B is nearly the same as that of disordered one indicating the obvious suppressing effect of boron on the H2-induced embrittlement. Based on the segregation behavior of boron in Ni3A1, it is proposed that the suppressing effect of boron in Ni3Fe on the H2-induced embrittlement is attributed to the segregation of boron on grain boundaries, thereby reducing the hydrogen diffusivity along the grain boundaries.
基金financial supports from the Inner Mongolia Natural Science Foundation,China (No.2019BS05005)the Inner Mongolia University of Science and Technology Innovation Fund,China (No.2019QDL-B11)the National Natural Science Foundation of China (Nos.51901105, 51871125, 51761032).
文摘The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.
基金financially supported by the National Natural Science Foundation of China(No.52174363)the GDAS Project of Science and Technology Development,China(No.2019GDASYL-0203002)+2 种基金the Key Research and Development Program of Guangdong Province,China(No.2020B010186002)the Science and Technology Project of Zhaoqing City,China(Nos.2021C003,2018K006)the Development of Key Technologies for Material and Microstructure Control of High Thermal Conductivity Casting Aluminum Alloy,China(No.2014A030313221)。
文摘Ce element was introduced to modify Al−2%Fe(mass fraction)binary alloy.The microstructures,crystallization behavior,electrical/thermal conductivities and mechanical properties of these alloys were systematically investigated.The results indicated that the appropriate Ce addition decreased the recalescence temperature and growth temperature of Al−Fe eutectic structure,improved the morphology and distribution of Fe-containing phase,and simultaneously increased the conductivity and mechanical properties.The annealed treatment improved the thermal conductivity of these alloys due to the decreasing concentration of point defects.Rolling process further broke up the coarser Fe-containing phases into finer particles and made the secondary phases uniformly distributed in theα(Al)matrix.After subsequent annealing treatment and rolling deformation,the thermal conductivity,ultimate tensile strength and hardness of the Al−2%Fe−0.3%Ce(mass fraction)alloy reached 226 W/(m·K),(182±1.4)MPa and HBW(49.5±1.7),respectively.
基金This work was financially supported by the National Natural Science Foundation of China (No.50274005).
文摘The isothermal corrosion testing, microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied. The corrosion of Fe3Si alloy in molten zinc was controlled by attacking the grain boundaries preferentially. Aluminum reacted with iron of Fe3Si alloy firstly while the samples were immersed in molten zinc, although aluminum contents in the molten zinc were very low. The phase of reaction product was thought to be Fe2Al5. The corrosion rate of the Fe3Si alloy in molten zinc was determined to be approximately 2.9×10^-3 mm/h, therefore the liquid zinc corrosion resistance of Fe3Si alloy was very weak.
文摘The Fe−Ni−TiO_(2) nanocomposite coatings were electrodeposited by pulse frequency variation.The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies.By increasing the pulse frequency from 10 to 500 Hz,the iron and TiO_(2) nanoparticles contents were increased in expense of nickel content.XRD patterns showed that by increasing the frequency to 500 Hz,an enhancement of BCC phase was observed and the grain size of deposits was reduced to 35 nm.The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO_(2) nanoparticles into the Fe−Ni matrix(5.13 wt.%).Moreover,the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.
文摘Manuscript received 24 June 1999 The Fe Al P alloy deposits were plated on copper sheets by electroless plating. The change law of the deposition rate, composition, surface appearance and structure for the deposits was studied by changing the metallic salt ratios (AlCl 3/AlCl 3+FeSO 4), the concentration of metallic salt AlCl 3 and reductant NaH 2PO 2. The optimum plating bath was obtained. It was found that the choices of ligand and reductant were the key of increasing Al content for the deposits.
文摘The cyclic voltammetry and potential step methods were used to investigate the electrochemical behavior of Fe 2+ and La 3+ in FeCl 2 LiCl DMSO and LaCl 3 LiCl DMSO systems on Pt, Cu and Ni cathodes. The electroreduction of Fe 2+ to Fe is irreversible in one step,while the electroreduction of La 3+ to La is quasi reversible. The diffusion coefficient of La 3+ in LaCl 3 LiCl DMSO system at 298 K was 3 1×10 -6 cm 2·s -1 . The diffusion coefficient and transfer coefficient of Fe 2+ in FeCl 2 LiCl DMSO system at 298 K were 2 54×10 -6 cm 2·s -1 and 0 24, respectively. La Fe alloy films containing La from 22 7% to 37 1% (mass fraction) were prepared by potentiostatic electrolysis on Cu substrates at a deposition potential from -1 750 to -2 450 V (vs SCE). The fine La Fe alloy films were also obtained by pulse electrolysis at a pulse current densities from 2 to 6 mA·cm -2 . The surfaces of these alloy films are smooth, adhesive and uniform, and have metallic luster.
基金Projects(51471084,61475117)supported by the National Natural Science Foundation of ChinaProject(13ZCZDGX01109)supported by Tianjin Municipal Science and Technology Commission of ChinaProject(20122BBE500031)supported by the Key Technology Project of Jiangxi Province in China
文摘To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.
基金supported by National Key Research and Development Program (No. 2018YFA0702900)National Natural Science Foundation of China (No. 51975096)+1 种基金Science Challenge Project (No. TZ2018006-0101-01)Liao Ning Revitalization Talents Program (No. XLYC1807230)。
文摘Fine finishing of tungsten alloy is required to improve the surface quality of molds and precision instruments. Nevertheless, it is difficult to obtain high-quality surfaces as a result of grain boundary steps attributed to differences in properties of two-phase microstructures. This paper presents a theoretical and experimental investigation on chemical mechanical polishing of W–Ni–Fe alloy. The mechanism of the boundary step generation is illustrated and a model of grain boundary step formation is proposed. The mechanism reveals the effects of mechanical and chemical actions in both surface roughness and material removal. The model was verified by the experiments and the results show that appropriately balancing the mechanical and chemical effects restrains the generation of boundary steps and leads to a fine surface quality with a high removal rate by citric acid-based slurry.
文摘The behaviour of the pre bainitic transformation in Fe Ni alloy was investigated by using SAM, X ray diffraction and TEM. The results show that there is segregation of Ni atoms in austenite and that bainite forms in depleted regions of Ni atoms.
基金Projects(51775365,51405329) supported by the National Natural Science Foundation of ChinaProject(2015M570239) supported by the China Postdoctoral Science Foundation
文摘This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their applications as high-temperature wear resistant mechanical parts.Additionally,the wear mechanism of alloys is evaluated.The tribological properties of alloys are systematically studied by using a ball-on-disc tribometer at 10 N and 0.20 m/s from RT to 800°C sliding against Si3N4 ceramic ball.The boron element greatly improves the wear resistance of specimens as compared with that of unreinforced specimen.The friction coefficients of specimens decrease with increasing of testing temperature.The wear rates of Fe-Cr-B alloys decrease firstly and then raise with the increase of boron content.The specific wear rates of specimens with boron are 1/10 of the unreinforced specimen.Fe-21wt%Cr-7wt%B keeps the best tribological properties at high temperature.
文摘A novel process of electroplating amorphous Fe Cr Ni alloy in chloride aqueous solution with Fe(Ⅱ), Ni(Ⅱ) and Cr(Ⅲ) was reported. Couple plasma atomic emission spectrometry (ICP AES), X ray diffractometry(XRD), scanning electronic microscopy(SEM), microhardness test and rapid heating cooling method were adopted to detect the properties of the amorphous Fe Ni Cr deposit, such as composition, crystalline structure, micrograph, hardness, and adherence between deposit and substrate. The effects of the operating parameters on the electrodeposit of the amorphous Fe Ni Cr alloy were discussed in detail. The results show that a 8.7?μm thick mirror like amorphous Fe Ni Cr alloy deposit, with Vicker’s hardness of 530 and composition of 45%~55% Fe, 33%~37% Ni, 9%~23% Cr was obtained by electroplating for 20?min at room temperature(10~30?℃), cathode current 10~16?A/dm 2, pH=1.0~3.0. The XRD patterns show that there only appears a broad hump around 2 θ of 41?°~47?°for the amorphous Fe Ni Cr alloy deposit, while the SEM micrographs show that the deposit contains only a few fine cracks but no pinholes.