C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t...C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.展开更多
The experimental apparatus by self-designed was used,Fe/Co particles encapsulated in multi-walled carbon nanotubes(MWCNTs) were prepared by the method of anodic arc discharging plasma. The products were characterized ...The experimental apparatus by self-designed was used,Fe/Co particles encapsulated in multi-walled carbon nanotubes(MWCNTs) were prepared by the method of anodic arc discharging plasma. The products were characterized by transmission election microscopy,Raman spectroscopy and X-ray diffractometry. The magnetic properties of the products were characterized with vibration sample magnetometer. The TEM results show that MWCNTs have little impurity and good particles size,and Fe/Co with high continuity encapsulaties in carbon nanotubes. The saturated magnetization(σs),remanence(σm) and coercivity(Hc) of the sample are 17.30 A/(m·kg),3.96 A/(m·kg) and 31 521.60 A/m,showing better ferromagnetism compared with the bulk Fe/Co. The optimal conditions in this case are as follows:a helium gas atmosphere of 6.0×104 Pa,an arc current of 70 A,a voltage drop of 24 V,a constant distance of about 2 mm between the anodes and cathode,metallic powder contents of Fe and Co of 15.0%(mass fraction) and 15.0%,respectively,and well cooled electrodes and collector. This process is a convenient and effective that Fe/Co particles can be encapsulated in MWCNTs.展开更多
The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of ...The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.展开更多
文摘C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.
基金Project (ZS-011-A25-007) supported by the Natural Science Foundation of Gansu province, China
文摘The experimental apparatus by self-designed was used,Fe/Co particles encapsulated in multi-walled carbon nanotubes(MWCNTs) were prepared by the method of anodic arc discharging plasma. The products were characterized by transmission election microscopy,Raman spectroscopy and X-ray diffractometry. The magnetic properties of the products were characterized with vibration sample magnetometer. The TEM results show that MWCNTs have little impurity and good particles size,and Fe/Co with high continuity encapsulaties in carbon nanotubes. The saturated magnetization(σs),remanence(σm) and coercivity(Hc) of the sample are 17.30 A/(m·kg),3.96 A/(m·kg) and 31 521.60 A/m,showing better ferromagnetism compared with the bulk Fe/Co. The optimal conditions in this case are as follows:a helium gas atmosphere of 6.0×104 Pa,an arc current of 70 A,a voltage drop of 24 V,a constant distance of about 2 mm between the anodes and cathode,metallic powder contents of Fe and Co of 15.0%(mass fraction) and 15.0%,respectively,and well cooled electrodes and collector. This process is a convenient and effective that Fe/Co particles can be encapsulated in MWCNTs.
基金supported by the National Natural Science Foundation of China(No.52374372)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB430042)+3 种基金the Jiangsu Province Large Scientific Instruments Open Sharing Autonomous Research Filing Project,China(No.TC2023A037)the Yangzhou City−Yangzhou University Cooperation Foundation,China(No.YZ2022183)High-end Talent Support Program of Yangzhou University,China,Qinglan Project of Yangzhou University,ChinaLvyangjinfeng Talent program of Yangzhou,China.
文摘The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.