Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Recent exploration results indicate that a significant exploration potential remains in the Dongying Depression of the Bohai Bay Basin and the undiscovered oil and gas are largely reservoired in subtle traps including...Recent exploration results indicate that a significant exploration potential remains in the Dongying Depression of the Bohai Bay Basin and the undiscovered oil and gas are largely reservoired in subtle traps including turbidite litholigcal traps of the Sha-3 Member. In order to effectively guide the exploration program targeting turbidites, this study will focus on the depositional models of the Sha-3 Member turbidites and oil/gas accumulation characteristics in these turbidites. Two corresponding relationships were found. One is that the East African Rift Valley provides a modern analog for the depositional systems in the Dongying Depression. The other is that the depositional models of line-sourced slope aprons, single point-source submarine fan and multiple source ramp turbidite, established for deep-sea turbidites, can be applied to interpret the depositional features of the turbidite fans of three different origins: slope turbidite aprons, lake floor turbidite fans and delta-fed turbidite fans in the Sha-3 Member. Updip sealing integrity is the key factor determining whether oil/gas accumulates or not in the slope aprons and lake floor fans. The factors controlling oil/gas migration and accumulation in the delta-fed turbidite fans are not very clear. Multiple factors rather than a single factor probably played significant roles in these processes.展开更多
Gallium oxide(Ga_2O_3) thin films were deposited on a-Al2O3(1120) substrates by pulsed laser deposition(PLD) with different oxygen pressures at 650?C. By reducing the oxygen pressure, mixed-phase Ga_2O_3 films with α...Gallium oxide(Ga_2O_3) thin films were deposited on a-Al2O3(1120) substrates by pulsed laser deposition(PLD) with different oxygen pressures at 650?C. By reducing the oxygen pressure, mixed-phase Ga_2O_3 films with α and β phases can be obtained, and on the basis of this, mixed-phase Ga_2O_3 thin film solar-blind photodetectors(SBPDs) were prepared.Comparing the responsivities of the mixed-phase Ga_2O_3 SBPDs and the single β-Ga_2O_3 SBPDs at a bias voltage of 25 V,it is found that the former has a maximum responsivity of approximately 12 A/W, which is approximately two orders of magnitude larger than that of the latter. This result shows that the mixed-phase structure of Ga_2O_3 thin films can be used to prepare high-responsivity SBPDs. Moreover, the cause of this phenomenon was investigated, which will provide a feasible way to improve the responsivity of Ga_2O_3 thin film SBPDs.展开更多
Barium titanate (BaTiO3) and silver (Ag) composite film with high dielectric constant was grown at room temperature by an aerosol deposition method.The dielectric constant increases by 0.5 times after adding Ag to the...Barium titanate (BaTiO3) and silver (Ag) composite film with high dielectric constant was grown at room temperature by an aerosol deposition method.The dielectric constant increases by 0.5 times after adding Ag to the BaTiO3 matrix,compared with pure BaTiO3.The high dielectric constant can be attributed to the percolation effect of Ag inclusions in the BaTiO3 matrix.The Ag was present in the form of discrete layer in the BaTiO3 film.The dielectric properties of BaTiO3 Ag were discussed in detail taking into account the changes in microstructures.展开更多
Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facil...Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.展开更多
Zinc metal batteries have been considered as a promising candidate for next-generation batteries due to their high safety and low cost.However,their practical applications are severely hampered by the poor cyclability...Zinc metal batteries have been considered as a promising candidate for next-generation batteries due to their high safety and low cost.However,their practical applications are severely hampered by the poor cyclability that caused by the undesired dendrite growth of metallic Zn.Herein,Ti_(3)C_(2)T_(x) MXene was first used as electrolyte additive to facilitate the uniform Zn deposition by controlling the nucleation and growth process of Zn.Such MXene additives can not only be absorbed on Zn foil to induce uniform initial Zn deposition via providing abundant zincophilic-O groups and subsequently participate in the formation of robust solid-electrolyte interface film,but also accelerate ion transportation by reducing the Zn^(2+) concentration gradient at the electrode/electrolyte interface.Consequently,MXene-containing electrolyte realizes dendrite-free Zn plating/striping with high Coulombic efficiency(99.7%)and superior reversibility(stably up to 1180 cycles).When applied in full cell,the Zn-V_(2)O_(5)cell also delivers significantly improved cycling performances.This work provides a facile yet effective method for developing reversible zinc metal batteries.展开更多
Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aero...Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,observed in Mg-alloy components manufactured through DED are discussed.Additionally,the preventive measures implemented to counteract the formation of these defects are explored.展开更多
A comparative study of two kinds of oxidants(H2O and O3) with the combination of two metal precursors(TMA and La(~iPrCp)3) for atomic layer deposition(ALD) La2O3/Al2O3 nanolaminates is carried out. The effect...A comparative study of two kinds of oxidants(H2O and O3) with the combination of two metal precursors(TMA and La(~iPrCp)3) for atomic layer deposition(ALD) La2O3/Al2O3 nanolaminates is carried out. The effects of different oxidants on the physical properties and electrical characteristics of La2O3/Al2O3 nanolaminates are studied. Initial testing results indicate that La2O3/Al2O3 nanolaminates could avoid moisture absorption in the air after thermal annealing. However, moisture absorption occurs in H2O-based La2O3/Al2O3 nanolaminates due to the residue hydroxyl/hydrogen groups during annealing. As a result, roughness enhancement, band offset variation, low dielectric constant and poor electrical characteristics are measured because the properties of H2O-based La2O3/Al2O3 nanolaminates are deteriorated. Addition thermal annealing effects on the properties of O3-based La2O3/Al2O3 nanolaminates indicate that O3 is a more appropriate oxidant to deposit La2O3/Al2O3 nanolaminates for electron devices application.展开更多
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
文摘Recent exploration results indicate that a significant exploration potential remains in the Dongying Depression of the Bohai Bay Basin and the undiscovered oil and gas are largely reservoired in subtle traps including turbidite litholigcal traps of the Sha-3 Member. In order to effectively guide the exploration program targeting turbidites, this study will focus on the depositional models of the Sha-3 Member turbidites and oil/gas accumulation characteristics in these turbidites. Two corresponding relationships were found. One is that the East African Rift Valley provides a modern analog for the depositional systems in the Dongying Depression. The other is that the depositional models of line-sourced slope aprons, single point-source submarine fan and multiple source ramp turbidite, established for deep-sea turbidites, can be applied to interpret the depositional features of the turbidite fans of three different origins: slope turbidite aprons, lake floor turbidite fans and delta-fed turbidite fans in the Sha-3 Member. Updip sealing integrity is the key factor determining whether oil/gas accumulates or not in the slope aprons and lake floor fans. The factors controlling oil/gas migration and accumulation in the delta-fed turbidite fans are not very clear. Multiple factors rather than a single factor probably played significant roles in these processes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51872187,51302174,11774241,and 61704111)the National Key Research and Development Program of China(Grant No.2017YFB0400304)+3 种基金the Natural Science Foundation of Guangdong Province,China(Grant Nos.2016A030313060 and 2017A030310524)the Project of Department of Education of Guangdong Province,China(Grant No.2014KTSCX110)the Fundamental Research Project of Shenzhen,China(Grant No.JCYJ20180206162132006)the Science and Technology Foundation of Shenzhen,China(Grant No.JCYJ2015-2018)
文摘Gallium oxide(Ga_2O_3) thin films were deposited on a-Al2O3(1120) substrates by pulsed laser deposition(PLD) with different oxygen pressures at 650?C. By reducing the oxygen pressure, mixed-phase Ga_2O_3 films with α and β phases can be obtained, and on the basis of this, mixed-phase Ga_2O_3 thin film solar-blind photodetectors(SBPDs) were prepared.Comparing the responsivities of the mixed-phase Ga_2O_3 SBPDs and the single β-Ga_2O_3 SBPDs at a bias voltage of 25 V,it is found that the former has a maximum responsivity of approximately 12 A/W, which is approximately two orders of magnitude larger than that of the latter. This result shows that the mixed-phase structure of Ga_2O_3 thin films can be used to prepare high-responsivity SBPDs. Moreover, the cause of this phenomenon was investigated, which will provide a feasible way to improve the responsivity of Ga_2O_3 thin film SBPDs.
基金supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Korea
文摘Barium titanate (BaTiO3) and silver (Ag) composite film with high dielectric constant was grown at room temperature by an aerosol deposition method.The dielectric constant increases by 0.5 times after adding Ag to the BaTiO3 matrix,compared with pure BaTiO3.The high dielectric constant can be attributed to the percolation effect of Ag inclusions in the BaTiO3 matrix.The Ag was present in the form of discrete layer in the BaTiO3 film.The dielectric properties of BaTiO3 Ag were discussed in detail taking into account the changes in microstructures.
基金sponsored by the National Natural Science Foundation of China (Nos. 51402190, 61574091)Shanghai Sailing Program (18YF1427800)the special funds for theoretical physics of the National Natural Science Foundation of China (No. 11747029)
文摘Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.
基金the National Natural Science Foundation of China(No.51902036,51702138,22075115)Natural Science Foundation of Chongqing Science&Technology Commission(No.cstc2019jcyj-msxm1407)+4 种基金Natural Science Foundation of Chongqing Technology and Business University(No.1952009)the Venture&Innovation Support Program for Chongqing Overseas Returnees(Grant No.CX2018129)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201900826 and KJQN201800808)the Innovation Group of New Technologies for Industrial Pollution Control of Chongqing Education Commission(Grant No.CXQT19023)Key Disciplines of Chemical Engineering and Technology in Chongqing Colleges and Universities during the 13th Five Year Plan provided the financial support.
文摘Zinc metal batteries have been considered as a promising candidate for next-generation batteries due to their high safety and low cost.However,their practical applications are severely hampered by the poor cyclability that caused by the undesired dendrite growth of metallic Zn.Herein,Ti_(3)C_(2)T_(x) MXene was first used as electrolyte additive to facilitate the uniform Zn deposition by controlling the nucleation and growth process of Zn.Such MXene additives can not only be absorbed on Zn foil to induce uniform initial Zn deposition via providing abundant zincophilic-O groups and subsequently participate in the formation of robust solid-electrolyte interface film,but also accelerate ion transportation by reducing the Zn^(2+) concentration gradient at the electrode/electrolyte interface.Consequently,MXene-containing electrolyte realizes dendrite-free Zn plating/striping with high Coulombic efficiency(99.7%)and superior reversibility(stably up to 1180 cycles).When applied in full cell,the Zn-V_(2)O_(5)cell also delivers significantly improved cycling performances.This work provides a facile yet effective method for developing reversible zinc metal batteries.
文摘Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,observed in Mg-alloy components manufactured through DED are discussed.Additionally,the preventive measures implemented to counteract the formation of these defects are explored.
基金supported by the National Natural Science Foundation of China(Grant Nos.61604016 and 51501017)the Fundamental Research Funds for the Central Universities,China(Grant No.310831161003)
文摘A comparative study of two kinds of oxidants(H2O and O3) with the combination of two metal precursors(TMA and La(~iPrCp)3) for atomic layer deposition(ALD) La2O3/Al2O3 nanolaminates is carried out. The effects of different oxidants on the physical properties and electrical characteristics of La2O3/Al2O3 nanolaminates are studied. Initial testing results indicate that La2O3/Al2O3 nanolaminates could avoid moisture absorption in the air after thermal annealing. However, moisture absorption occurs in H2O-based La2O3/Al2O3 nanolaminates due to the residue hydroxyl/hydrogen groups during annealing. As a result, roughness enhancement, band offset variation, low dielectric constant and poor electrical characteristics are measured because the properties of H2O-based La2O3/Al2O3 nanolaminates are deteriorated. Addition thermal annealing effects on the properties of O3-based La2O3/Al2O3 nanolaminates indicate that O3 is a more appropriate oxidant to deposit La2O3/Al2O3 nanolaminates for electron devices application.