The halopyrimidine 5-bromo-2′-deoxyuridine(BrdU)is an exogenous marker of DNA synthesis.Since the introduction of monoclonal antibodies against BrdU,an increasing number of methodologies have been used for the immuno...The halopyrimidine 5-bromo-2′-deoxyuridine(BrdU)is an exogenous marker of DNA synthesis.Since the introduction of monoclonal antibodies against BrdU,an increasing number of methodologies have been used for the immunodetection of this synthesized bromine-tagged base analogue into replicating DNA.BrdU labeling is widely used for identifying neuron precursors and following their fate during the embryonic,perinatal,and adult neurogenesis in a variety of vertebrate species including birds,reptiles,and mammals.Due to BrdU toxicity,its incorporation into replicating DNA presents adverse consequences on the generation,survival,and settled patterns of cells.This may lead to false results and misinterpretation in the identification of proliferative neuroblasts.In this review,I will indicate the detrimental effects of this nucleoside during the development of the central nervous system,as well as the reliability of BrdU labeling to detect proliferating neuroblasts.Moreover,it will show factors influencing BrdU immunodetection and the contribution of this nucleoside to the study of prenatal,perinatal,and adult neurogenesis.Human adult neurogenesis will also be discussed.It is my hope that this review serves as a reference for those researchers who focused on detecting cells that are in the synthetic phase of the cell cycle.展开更多
[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga,...[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga, which was separated from the eutrophic water, were put into the solutions of Hg^2+ and Cr(Ⅵ) with different concentrations and their mixture solution, respectively. And the toxicity effect of Hg^2+ and Cr(Ⅵ) on the growth and propagation of alga in eutrophic water was observed. [ Result] The alga in eutrophic water performed rather sensitive to Cr(Ⅵ) and when its concentration was over 1 mg/L, threre was obvious effect on alga growth. The alga was not very sensitive to Hg^2+ when its concentration was lower, but its toxicity became stronger and stronger when its concentration increased to some extent and the toxicity effect of Cr(Ⅵ) on alga growth was just on the contrary. When the ion concentration was lower than 10 mg/L, the toxicity of Hg^2+ on alga was lower than that of Cr(Ⅵ). When the concentration was over 10 mg/L, the toxicity of Hg^2+ exceeded that of Cr(Ⅵ). The toxicity of ion mixture solution of Hg^2+ and Cr(Ⅵ) had synergism inhibition on alga, which could be performed only when the concentration was over 4 mg/L. [ Conclusion] The toxicity of heavy metal on alga not only related to the alga cell, but also related to the concentration of heavy metal ion.展开更多
Ferroptosis is a type of programmed cell death dependent on iron.It is different from other forms of cell death such as apoptosis,classic necrosis and autophagy.Ferroptosis is involved in many neurodegenerative diseas...Ferroptosis is a type of programmed cell death dependent on iron.It is different from other forms of cell death such as apoptosis,classic necrosis and autophagy.Ferroptosis is involved in many neurodegenerative diseases.The role of ferroptosis in glutamate-induced neuronal toxicity is not fully understood.To test its toxicity,glutamate(1.25–20 mM)was applied to HT-22 cells for 12 to 48 hours.The optimal experimental conditions occurred at 12 hours after incubation with 5 mM glutamate.Cells were cultured with 3–12μM ferrostatin-1,an inhibitor of ferroptosis,for 12 hours before exposure to glutamate.The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Autophagy was determined by monodansylcadaverine staining and apoptosis by caspase 3 activity.Damage to cell structures was observed under light and by transmission electron microscopy.The release of lactate dehydrogenase was detected by the commercial kit.Reactive oxygen species were measured by flow cytometry.Glutathione peroxidase activity,superoxide dismutase activity and malondialdehyde level were detected by the appropriate commercial kit.Prostaglandin peroxidase synthase 2 and glutathione peroxidase 4 gene expression was detected by real-time quantitative polymerase chain reaction.Glutathione peroxidase 4 and nuclear factor erythroid-derived-like 2 protein expression was detected by western blot analysis.Results showed that ferrostatin-1 can significantly counter the effects of glutamate on HT-22 cells,improving the survival rate,reducing the release of lactate dehydrogenase and reducing the damage to mitochondrial ultrastructure.However,it did not affect the caspase-3 expression and monodansylcadaverine-positive staining in glutamate-injured HT-22 cells.Ferrostatin-1 reduced the levels of reactive oxygen species and malondialdehyde and enhanced superoxide dismutase activity.It decreased gene expression of prostaglandin peroxidase synthase 2 and increased gene expression of glutathione peroxidase 4 and protein expressions of glutathione peroxidase 4 and nuclear factor(erythroid-derived)-like 2 in glutamate-injured HT-22 cells.Treatment of cultured cells with the apoptosis inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone(2–8μM),autophagy inhibitor 3-methyladenine(100–400μM)or necrosis inhibitor necrostatin-1(10–40μM)had no effect on glutamate induced cell damage.However,the iron chelator deferoxamine mesylate salt inhibited glutamate induced cell death.Thus,the results suggested that ferroptosis is caused by glutamate-induced toxicity and that ferrostatin-1 protects HT-22 cells from glutamate-induced oxidative toxicity by inhibiting the oxidative stress.展开更多
[Objective] The aim of this study was to detect the acute toxicity of clethodim, cypermethrin and 2,4-D-butylate. [Method] Chironomus sinicus larvae were exposed to different concentrations of clethodim, cypermethrin ...[Objective] The aim of this study was to detect the acute toxicity of clethodim, cypermethrin and 2,4-D-butylate. [Method] Chironomus sinicus larvae were exposed to different concentrations of clethodim, cypermethrin and 2,4-D-butylate. Survival rate, lethal concentration 50 (LC50) and superoxide dismutase (SOD) activity in the homogenate of the larvae were monitored to detect the toxicity of the pesti- cides. [Result] The survival rates of C. sinicus larvae exposed to cypermethrin and 2,4-D-butylate for 12 h were almost unchanged at different concentrations, but de- creased with concentration increasing 48 h later. For each pesticide, the differences in survival rates of C. sinicus larvae at 48 h were significant. The 48 h LC50 of clethodim, cypermethrin and 2,4-D-butylate to C. sinicus larvae were 1.842, 0.150 and 1.999 mg/L, respectively. The acute toxicity of cypermethrin was the highest a- mong the three pesticides and that of 2,4-D-butylate was the lowest. Clethodim sig- nificantly reduced the SOD content in a dose-dependent manner. 2,4-D-butylate also reduced SOD content in C. sinicus larvae, but the reduction was not significantly re- lated to its dosage. However, cypermethrin showed no significant effect on SOD ac- tivity in C. sinicus larvae.展开更多
Twelve healthy rats were divided into the T-2 toxin group receiving gavage of 1 mg/kg T-2 toxin and the control group receiving gavage of normal saline. Total relative concentrations of T-2 toxin and HT-2 toxin in the...Twelve healthy rats were divided into the T-2 toxin group receiving gavage of 1 mg/kg T-2 toxin and the control group receiving gavage of normal saline. Total relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system(thighbone, knee joints, and costal cartilage) were significantly higher than those in the heart, liver, and kidneys(P 〈 0.05). The relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system(thighbone and costal cartilage) were also significantly higher than those in the heart, liver, and kidneys. The rats administered T-2 toxin showed rapid metabolism compared with that in rats administered HT-2 toxin, and the metabolic conversion rates in the different tissues were 68.20%-90.70%.展开更多
Human beings are increasingly exposed to phthalates,which are a group of chemicals used to make plastics more flexible and harder to break,and simultaneously ingesting abundant food emulsifiers via daily diet.The purp...Human beings are increasingly exposed to phthalates,which are a group of chemicals used to make plastics more flexible and harder to break,and simultaneously ingesting abundant food emulsifiers via daily diet.The purpose of this study was to investigate the effect of the food emulsifier glycerin monostearate(GMS)on male reproductive toxicity caused by di(2-ethylhexyl)phthalate(DEHP,one of the phthalates)and explore the underlying mechanism.Thirty male Sprague-Dawley rats were randomly divided into control group,DEHP group and DEHP+GMS group.Rats in the DEHP group and DEHP+GMS group were orally administered with 200 mg/kg/d DEHP with or without 20 mg/kg/d GMS.After 30 days of continuous intervention,it was found that the serum testosterone level was significantly lowered in DEHP group and DEHP+GMS group than that in control group(P<0.01).The serum testosterone level and the relative testis weight were significantly decreased in the DEHP+GMS group as compared with those in the DEHP group and control group(P<0.05).More spermatids were observed to be shed off in DEHP+GMS group than in DEHP group.The expression levels of cell cycle checkpoint kinase 1(Chkl),cell division cycle gene 2(Cdc2),and cyclin-dependent kinase 2(CDK2)were down-regulated in DEHP group,and this tendency was more significant in DEHP+GMS group(P<0.05 or P<0.01).There was no significant difference in the P-glycoprotein(P-gp)expression between DEHP group and control group.However,P-gp was markedly down-regulated in DEHP+GMS group(P<O.Ol).The results indicated that the food emulsifier GMS aggravated the toxicity of DEHP on male reproduction by inhibiting the cell cycle of testicular cells and the expression of P-gp in testis tissues.展开更多
Toxicity of 0.3 ppm (96 h LC50 value) and 0.03 ppm of mercuric chloride on the melanophores of the skin at different time intervals has been studied. Mercury treatment causes immediate increase in the number and size ...Toxicity of 0.3 ppm (96 h LC50 value) and 0.03 ppm of mercuric chloride on the melanophores of the skin at different time intervals has been studied. Mercury treatment causes immediate increase in the number and size of the pigment cells. Subsequently these pigment cells form a dense matting of melanophore network with their cell processes intellacing with those of their neighbours. These cells later show degeneration and lysis releasing large quantity of pigment granules into the intercellular spaces in the dermis.Later the pigment cells regenerate several times each followed by degeneration in a cyclic manner. Prolonged treatment with subletha. concentration of mercuric chloride does not show significant alteration in the melanophore density and size. Statistical analysis and wide spread destruction of melanophores observed during 4-6 days of exPosure might help in testing water samples contaminated with lethal concentration of heavy metal salts展开更多
Aim: 2-bromopropane (2-BP) is known as an environmentalendocrine disrupter. Recently its reproductive and hematopoitic tox-icity has aroused the attention of the toxicologists. The presentstudy was designed to study i...Aim: 2-bromopropane (2-BP) is known as an environmentalendocrine disrupter. Recently its reproductive and hematopoitic tox-icity has aroused the attention of the toxicologists. The presentstudy was designed to study its testicular toxicity in male rats.Methods; Forty male SD rats were divided into four groups of10 rats each. 2-BP was administered intraperitoneally at doses of1800 mg, 600 mg or 200 mg per kg body weight per day for 5days. The control rats were given a similar volume of the vehicle.The animals were sacrificed two days after the last dose. Results: With increasing doses, the seminiferous tubular damage wasgradually increased and the percentage of spermatogonia in the totalgerm cells gradually decreased ( P < 0. 05). The seminiferoustubular area of rats taking 1800 mg/kg was also reduced significant-ly . The body weight, testicular weight and relative testicular weightof rats taking the highest dose level were all significantly decreasedas compared with the controls. (Reprod Contracep 2001; 21; 157-60)展开更多
Objective To evaluate the acute toxicity of 2-deoxy-D-glucose (2DG) by oral (p.o.) and intravenous (i.v.) routes, and also the cardio-respiratory effects following high doses of 2DG in animal models. Methods The...Objective To evaluate the acute toxicity of 2-deoxy-D-glucose (2DG) by oral (p.o.) and intravenous (i.v.) routes, and also the cardio-respiratory effects following high doses of 2DG in animal models. Methods The LD50 of 2DG (in water) was determined in rats and mice by p.o. route and in mice by i.v. route. The effect of 2-DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg, i.v.) was studied on various cardio-respiratory parameters viz., mean arterial blood pressure, heart rate and respiratory rate in anaesthetised rats. The effect of 2DG (500 mg/kg, 1000 mg/kg, and 2000 mg/kg, p.o.) was also studied on various respiratory parameters viz., respiratory rate and tidal volume in conscious rats and mice using a computer program. Results The p.o. LD50 of 2DG was found to be 〉8000 mg/kg in mice and rats, and at this dose no death was observed. The LD50 in mice by i.v. route was found to be 8000 mg/kg. At this dose 2 out of 4 mice died and the death occurred within 6 h. A significant increase in the body weight was observed after p.o. administration of 2DG in rats at 500 mg/kg, 1000 mg/kg, and 2000 mg/kg doses. There was no significant change in the body weight at 4000 mg/kg and 8000 mg/kg by the p.o. route in rats and up to 8000 mg/kg by p.o. as well as i.v. routes in mice. Intravenous administration of 2DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg) in anaesthetised rats showed a time-dependent decrease in the mean arterial blood pressure. There was no change in the heart rate in any of the treatment groups. The tidal volume was not changed significantly by p.o administration in conscious rats, but a significant decrease in the respiratory frequency at 500 mg/kg and 1000 mg/kg doses was observed. In the mice also there was no change in the tidal volume after p.o, administration, but the respiratory frequency decreased significantly at 2000 mg/kg dose. Conclusion 2DG is a safe compound but can cause a fall in the blood pressure and a decrease in respiratory frequency at high doses.展开更多
This study is concerned with the effects of di (2-ethylhexyl) phthalate (DEHP) on two kinds of duckweeds (Spirodela polyrhiza and Lemna minor).The results indicate that DEHP has aquatic toxicity to Spirodela pol...This study is concerned with the effects of di (2-ethylhexyl) phthalate (DEHP) on two kinds of duckweeds (Spirodela polyrhiza and Lemna minor).The results indicate that DEHP has aquatic toxicity to Spirodela polyrhiza at 0.4 mg/L and to Lemna minor at over 0.1 mg/L by changing their physiologic-biochemical characteristics.The contents of duckweed chlorophyll and soluble protein decrease with increasing DEHP concentration after 7 d of exposure.DEHP shows the stimulating role in catalase (CAT) and superoxide dismutase (SOD) systems at relative low levels.At 0.01 mg/L and 0.005 mg/L,SOD activities of Spirodela polyrhiza and Lemna minor reach their peak values respectively,while CAT activity reaches its maximum value at 0.05 mg/L and 0.01 mg/L.When DEHP levels are too high,the protection enzyme system would be destroyed and plant growth is inhibited.The analysis of malondialdehyde (MDA) and Fourier transform infrared spectroscopy manifest that DEHP could affect the tested duckweeds by destroying its cell membranes,and Spirodela polyrhiza is more resistant to DEHP exposure than Lemna minor.展开更多
2-Bromopropane (2-BP) is considered as a kind of environmental endocrine disrupters (EDs). Its reproductive and hematopoietic toxicity has aroused the attention of international toxicologists during the past five ye...2-Bromopropane (2-BP) is considered as a kind of environmental endocrine disrupters (EDs). Its reproductive and hematopoietic toxicity has aroused the attention of international toxicologists during the past five years.In the present study, we aimed to determine experimentally the testicular toxicity of 2-BP in male rats. Materials & Methods Forty SD male rats were divided into four groups of 10 rats each. The rats were intra-abdominally administered 2-BP once per day for 5 days continuously at the doses of 1800 mg/kg, 600 mg/kg, 200 mg/kg and normal saline, respectively. The rats were dissected one week after the first administration. Results The body weight, absolute testes weight and relative testes weight of the rats in 1 800 mg/kg dose group decreased significantly with comparison to those of the con- trol group,while the weight of accessory gonads showed no significant change. With the increase of dosage, the seminiferous tubules damage rate aggravated while the ratio of spermatogonia in total germ cells fell with P<0. 05. The seminiferous tubule area of rats in 1800 mg/kg group also reduced significantly. Under light microscopic examination, the spermatogonia of administered rats showed degeneration and chro- matin condensation. The nucleus of spermatocytes appeared hyperchromatic and py- knotic.Obvious testicular damage could be found in rats of high dose group, including large amount of spermatogonia necrosis or loss and reduced spermatocyte number. The electron microscopic findings were similar to those of the light microscopy, except that typical morphological change was found in the middle dose group: the structure of spermatogonia was destroyed, mitochondrion and endoplasmic reticulum scattered outside, nucleus disintegrated; some of the spermatocytes' membrane became nuclear, chromatin condensed and cogulation necrosis appeared; the nuclear membrane of round spermatids also showed slight damage. Conclusion The results indicated that testis was the target organ of 2-BP's reproduc- tive toxicity. The testicular toxicity of 2-BP started from damaging spermatogonia and its damage on spermatogonia was most obvious among all germ cells.展开更多
文摘The halopyrimidine 5-bromo-2′-deoxyuridine(BrdU)is an exogenous marker of DNA synthesis.Since the introduction of monoclonal antibodies against BrdU,an increasing number of methodologies have been used for the immunodetection of this synthesized bromine-tagged base analogue into replicating DNA.BrdU labeling is widely used for identifying neuron precursors and following their fate during the embryonic,perinatal,and adult neurogenesis in a variety of vertebrate species including birds,reptiles,and mammals.Due to BrdU toxicity,its incorporation into replicating DNA presents adverse consequences on the generation,survival,and settled patterns of cells.This may lead to false results and misinterpretation in the identification of proliferative neuroblasts.In this review,I will indicate the detrimental effects of this nucleoside during the development of the central nervous system,as well as the reliability of BrdU labeling to detect proliferating neuroblasts.Moreover,it will show factors influencing BrdU immunodetection and the contribution of this nucleoside to the study of prenatal,perinatal,and adult neurogenesis.Human adult neurogenesis will also be discussed.It is my hope that this review serves as a reference for those researchers who focused on detecting cells that are in the synthetic phase of the cell cycle.
文摘[ Objective] The toxicity effect of Hg^2+ and Cr(Ⅵ) on alga growth in eutrophic water was studied to provide reference for biomonitoring and bioremediation of eutrophic water. [ Method ] The mother liquid of alga, which was separated from the eutrophic water, were put into the solutions of Hg^2+ and Cr(Ⅵ) with different concentrations and their mixture solution, respectively. And the toxicity effect of Hg^2+ and Cr(Ⅵ) on the growth and propagation of alga in eutrophic water was observed. [ Result] The alga in eutrophic water performed rather sensitive to Cr(Ⅵ) and when its concentration was over 1 mg/L, threre was obvious effect on alga growth. The alga was not very sensitive to Hg^2+ when its concentration was lower, but its toxicity became stronger and stronger when its concentration increased to some extent and the toxicity effect of Cr(Ⅵ) on alga growth was just on the contrary. When the ion concentration was lower than 10 mg/L, the toxicity of Hg^2+ on alga was lower than that of Cr(Ⅵ). When the concentration was over 10 mg/L, the toxicity of Hg^2+ exceeded that of Cr(Ⅵ). The toxicity of ion mixture solution of Hg^2+ and Cr(Ⅵ) had synergism inhibition on alga, which could be performed only when the concentration was over 4 mg/L. [ Conclusion] The toxicity of heavy metal on alga not only related to the alga cell, but also related to the concentration of heavy metal ion.
文摘Ferroptosis is a type of programmed cell death dependent on iron.It is different from other forms of cell death such as apoptosis,classic necrosis and autophagy.Ferroptosis is involved in many neurodegenerative diseases.The role of ferroptosis in glutamate-induced neuronal toxicity is not fully understood.To test its toxicity,glutamate(1.25–20 mM)was applied to HT-22 cells for 12 to 48 hours.The optimal experimental conditions occurred at 12 hours after incubation with 5 mM glutamate.Cells were cultured with 3–12μM ferrostatin-1,an inhibitor of ferroptosis,for 12 hours before exposure to glutamate.The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Autophagy was determined by monodansylcadaverine staining and apoptosis by caspase 3 activity.Damage to cell structures was observed under light and by transmission electron microscopy.The release of lactate dehydrogenase was detected by the commercial kit.Reactive oxygen species were measured by flow cytometry.Glutathione peroxidase activity,superoxide dismutase activity and malondialdehyde level were detected by the appropriate commercial kit.Prostaglandin peroxidase synthase 2 and glutathione peroxidase 4 gene expression was detected by real-time quantitative polymerase chain reaction.Glutathione peroxidase 4 and nuclear factor erythroid-derived-like 2 protein expression was detected by western blot analysis.Results showed that ferrostatin-1 can significantly counter the effects of glutamate on HT-22 cells,improving the survival rate,reducing the release of lactate dehydrogenase and reducing the damage to mitochondrial ultrastructure.However,it did not affect the caspase-3 expression and monodansylcadaverine-positive staining in glutamate-injured HT-22 cells.Ferrostatin-1 reduced the levels of reactive oxygen species and malondialdehyde and enhanced superoxide dismutase activity.It decreased gene expression of prostaglandin peroxidase synthase 2 and increased gene expression of glutathione peroxidase 4 and protein expressions of glutathione peroxidase 4 and nuclear factor(erythroid-derived)-like 2 in glutamate-injured HT-22 cells.Treatment of cultured cells with the apoptosis inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone(2–8μM),autophagy inhibitor 3-methyladenine(100–400μM)or necrosis inhibitor necrostatin-1(10–40μM)had no effect on glutamate induced cell damage.However,the iron chelator deferoxamine mesylate salt inhibited glutamate induced cell death.Thus,the results suggested that ferroptosis is caused by glutamate-induced toxicity and that ferrostatin-1 protects HT-22 cells from glutamate-induced oxidative toxicity by inhibiting the oxidative stress.
基金Supported by Fundamental Research Funds for the Central Universities(2572014EA0703)Innovation Experiment Program for University Students from Northeast Forestry University(201310225108)~~
文摘[Objective] The aim of this study was to detect the acute toxicity of clethodim, cypermethrin and 2,4-D-butylate. [Method] Chironomus sinicus larvae were exposed to different concentrations of clethodim, cypermethrin and 2,4-D-butylate. Survival rate, lethal concentration 50 (LC50) and superoxide dismutase (SOD) activity in the homogenate of the larvae were monitored to detect the toxicity of the pesti- cides. [Result] The survival rates of C. sinicus larvae exposed to cypermethrin and 2,4-D-butylate for 12 h were almost unchanged at different concentrations, but de- creased with concentration increasing 48 h later. For each pesticide, the differences in survival rates of C. sinicus larvae at 48 h were significant. The 48 h LC50 of clethodim, cypermethrin and 2,4-D-butylate to C. sinicus larvae were 1.842, 0.150 and 1.999 mg/L, respectively. The acute toxicity of cypermethrin was the highest a- mong the three pesticides and that of 2,4-D-butylate was the lowest. Clethodim sig- nificantly reduced the SOD content in a dose-dependent manner. 2,4-D-butylate also reduced SOD content in C. sinicus larvae, but the reduction was not significantly re- lated to its dosage. However, cypermethrin showed no significant effect on SOD ac- tivity in C. sinicus larvae.
基金partially supported by National Natural Scientific Foundation of China[81620108026,81302393]
文摘Twelve healthy rats were divided into the T-2 toxin group receiving gavage of 1 mg/kg T-2 toxin and the control group receiving gavage of normal saline. Total relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system(thighbone, knee joints, and costal cartilage) were significantly higher than those in the heart, liver, and kidneys(P 〈 0.05). The relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system(thighbone and costal cartilage) were also significantly higher than those in the heart, liver, and kidneys. The rats administered T-2 toxin showed rapid metabolism compared with that in rats administered HT-2 toxin, and the metabolic conversion rates in the different tissues were 68.20%-90.70%.
文摘Human beings are increasingly exposed to phthalates,which are a group of chemicals used to make plastics more flexible and harder to break,and simultaneously ingesting abundant food emulsifiers via daily diet.The purpose of this study was to investigate the effect of the food emulsifier glycerin monostearate(GMS)on male reproductive toxicity caused by di(2-ethylhexyl)phthalate(DEHP,one of the phthalates)and explore the underlying mechanism.Thirty male Sprague-Dawley rats were randomly divided into control group,DEHP group and DEHP+GMS group.Rats in the DEHP group and DEHP+GMS group were orally administered with 200 mg/kg/d DEHP with or without 20 mg/kg/d GMS.After 30 days of continuous intervention,it was found that the serum testosterone level was significantly lowered in DEHP group and DEHP+GMS group than that in control group(P<0.01).The serum testosterone level and the relative testis weight were significantly decreased in the DEHP+GMS group as compared with those in the DEHP group and control group(P<0.05).More spermatids were observed to be shed off in DEHP+GMS group than in DEHP group.The expression levels of cell cycle checkpoint kinase 1(Chkl),cell division cycle gene 2(Cdc2),and cyclin-dependent kinase 2(CDK2)were down-regulated in DEHP group,and this tendency was more significant in DEHP+GMS group(P<0.05 or P<0.01).There was no significant difference in the P-glycoprotein(P-gp)expression between DEHP group and control group.However,P-gp was markedly down-regulated in DEHP+GMS group(P<O.Ol).The results indicated that the food emulsifier GMS aggravated the toxicity of DEHP on male reproduction by inhibiting the cell cycle of testicular cells and the expression of P-gp in testis tissues.
文摘Toxicity of 0.3 ppm (96 h LC50 value) and 0.03 ppm of mercuric chloride on the melanophores of the skin at different time intervals has been studied. Mercury treatment causes immediate increase in the number and size of the pigment cells. Subsequently these pigment cells form a dense matting of melanophore network with their cell processes intellacing with those of their neighbours. These cells later show degeneration and lysis releasing large quantity of pigment granules into the intercellular spaces in the dermis.Later the pigment cells regenerate several times each followed by degeneration in a cyclic manner. Prolonged treatment with subletha. concentration of mercuric chloride does not show significant alteration in the melanophore density and size. Statistical analysis and wide spread destruction of melanophores observed during 4-6 days of exPosure might help in testing water samples contaminated with lethal concentration of heavy metal salts
文摘Aim: 2-bromopropane (2-BP) is known as an environmentalendocrine disrupter. Recently its reproductive and hematopoitic tox-icity has aroused the attention of the toxicologists. The presentstudy was designed to study its testicular toxicity in male rats.Methods; Forty male SD rats were divided into four groups of10 rats each. 2-BP was administered intraperitoneally at doses of1800 mg, 600 mg or 200 mg per kg body weight per day for 5days. The control rats were given a similar volume of the vehicle.The animals were sacrificed two days after the last dose. Results: With increasing doses, the seminiferous tubular damage wasgradually increased and the percentage of spermatogonia in the totalgerm cells gradually decreased ( P < 0. 05). The seminiferoustubular area of rats taking 1800 mg/kg was also reduced significant-ly . The body weight, testicular weight and relative testicular weightof rats taking the highest dose level were all significantly decreasedas compared with the controls. (Reprod Contracep 2001; 21; 157-60)
文摘Objective To evaluate the acute toxicity of 2-deoxy-D-glucose (2DG) by oral (p.o.) and intravenous (i.v.) routes, and also the cardio-respiratory effects following high doses of 2DG in animal models. Methods The LD50 of 2DG (in water) was determined in rats and mice by p.o. route and in mice by i.v. route. The effect of 2-DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg, i.v.) was studied on various cardio-respiratory parameters viz., mean arterial blood pressure, heart rate and respiratory rate in anaesthetised rats. The effect of 2DG (500 mg/kg, 1000 mg/kg, and 2000 mg/kg, p.o.) was also studied on various respiratory parameters viz., respiratory rate and tidal volume in conscious rats and mice using a computer program. Results The p.o. LD50 of 2DG was found to be 〉8000 mg/kg in mice and rats, and at this dose no death was observed. The LD50 in mice by i.v. route was found to be 8000 mg/kg. At this dose 2 out of 4 mice died and the death occurred within 6 h. A significant increase in the body weight was observed after p.o. administration of 2DG in rats at 500 mg/kg, 1000 mg/kg, and 2000 mg/kg doses. There was no significant change in the body weight at 4000 mg/kg and 8000 mg/kg by the p.o. route in rats and up to 8000 mg/kg by p.o. as well as i.v. routes in mice. Intravenous administration of 2DG (250 mg/kg, 500 mg/kg, and 1000 mg/kg) in anaesthetised rats showed a time-dependent decrease in the mean arterial blood pressure. There was no change in the heart rate in any of the treatment groups. The tidal volume was not changed significantly by p.o administration in conscious rats, but a significant decrease in the respiratory frequency at 500 mg/kg and 1000 mg/kg doses was observed. In the mice also there was no change in the tidal volume after p.o, administration, but the respiratory frequency decreased significantly at 2000 mg/kg dose. Conclusion 2DG is a safe compound but can cause a fall in the blood pressure and a decrease in respiratory frequency at high doses.
基金supported by the National Natural Science Foundation of China (Grant Nos.40973073,40830744)the Shanghai Leading Academic Discipline Project (Grant No.S30109)+1 种基金the National Key Technology Research and Development Program in the 11th Five Year Plan of China (Grant Nos.2008BAC32B03,2009BAA24B04)the Natural Science Foundation of the Science and Technology Commission of Shanghai Municipality (Grant No.09ZR1411300)
文摘This study is concerned with the effects of di (2-ethylhexyl) phthalate (DEHP) on two kinds of duckweeds (Spirodela polyrhiza and Lemna minor).The results indicate that DEHP has aquatic toxicity to Spirodela polyrhiza at 0.4 mg/L and to Lemna minor at over 0.1 mg/L by changing their physiologic-biochemical characteristics.The contents of duckweed chlorophyll and soluble protein decrease with increasing DEHP concentration after 7 d of exposure.DEHP shows the stimulating role in catalase (CAT) and superoxide dismutase (SOD) systems at relative low levels.At 0.01 mg/L and 0.005 mg/L,SOD activities of Spirodela polyrhiza and Lemna minor reach their peak values respectively,while CAT activity reaches its maximum value at 0.05 mg/L and 0.01 mg/L.When DEHP levels are too high,the protection enzyme system would be destroyed and plant growth is inhibited.The analysis of malondialdehyde (MDA) and Fourier transform infrared spectroscopy manifest that DEHP could affect the tested duckweeds by destroying its cell membranes,and Spirodela polyrhiza is more resistant to DEHP exposure than Lemna minor.
基金This study is under the support of Shanghai Science and Technology Committee
文摘2-Bromopropane (2-BP) is considered as a kind of environmental endocrine disrupters (EDs). Its reproductive and hematopoietic toxicity has aroused the attention of international toxicologists during the past five years.In the present study, we aimed to determine experimentally the testicular toxicity of 2-BP in male rats. Materials & Methods Forty SD male rats were divided into four groups of 10 rats each. The rats were intra-abdominally administered 2-BP once per day for 5 days continuously at the doses of 1800 mg/kg, 600 mg/kg, 200 mg/kg and normal saline, respectively. The rats were dissected one week after the first administration. Results The body weight, absolute testes weight and relative testes weight of the rats in 1 800 mg/kg dose group decreased significantly with comparison to those of the con- trol group,while the weight of accessory gonads showed no significant change. With the increase of dosage, the seminiferous tubules damage rate aggravated while the ratio of spermatogonia in total germ cells fell with P<0. 05. The seminiferous tubule area of rats in 1800 mg/kg group also reduced significantly. Under light microscopic examination, the spermatogonia of administered rats showed degeneration and chro- matin condensation. The nucleus of spermatocytes appeared hyperchromatic and py- knotic.Obvious testicular damage could be found in rats of high dose group, including large amount of spermatogonia necrosis or loss and reduced spermatocyte number. The electron microscopic findings were similar to those of the light microscopy, except that typical morphological change was found in the middle dose group: the structure of spermatogonia was destroyed, mitochondrion and endoplasmic reticulum scattered outside, nucleus disintegrated; some of the spermatocytes' membrane became nuclear, chromatin condensed and cogulation necrosis appeared; the nuclear membrane of round spermatids also showed slight damage. Conclusion The results indicated that testis was the target organ of 2-BP's reproduc- tive toxicity. The testicular toxicity of 2-BP started from damaging spermatogonia and its damage on spermatogonia was most obvious among all germ cells.