Nitrogen oxide(NO_(x))is one of the most critical contaminants in the air,and the control of NO_(x)emission from diesel vehicles is very important.Cu-based small-pore zeolites have already been applied for NO_(x)abate...Nitrogen oxide(NO_(x))is one of the most critical contaminants in the air,and the control of NO_(x)emission from diesel vehicles is very important.Cu-based small-pore zeolites have already been applied for NO_(x)abatement on diesel vehicles.Among the small-pore zeolites,Cu-SSZ-50 catalysts with good NH_(3)-SCR catalytic activity were believed to have potential for application.In this study,a one-pot synthesis method for Cu-SSZ-50 catalysts was developed for the first time,using the co-templates of Cu-TEPA and 2,6-dimethyl-N-methylpyridinium hydroxide.In this synthesis method,Cu-SSZ-50 with various Cu contents can be obtained by adjusting the amount of Cu-TEPA without the need for a further after-treatment process.The addition of Cu-TEPA affected the framework atoms and Cu species,and a lower Si/Al ratio and more SCR active Cu species were obtained.The synthesized catalyst with a Cu/Al ratio of 0.40 exhibited over 90%NO_(x)conversion between 200℃and 450℃for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).Meanwhile,over 80%NO_(x)conversion could be obtained from 250℃to 450℃after hydrothermal aging at 750℃for 16 h.In addition,both L-H and E-R mechanisms were proven to exist for the one-pot-synthesized Cu-SSZ-50 by in situ DRIFTS experiments.The simple synthesis procedure,excellent catalytic activity and hydrothermal stability brighten the prospects for the application of Cu-SSZ-50.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52200136,52225004 and 51978640)the Science and Technology Innovation“2025”major program in Ningbo(No.2020Z103)。
文摘Nitrogen oxide(NO_(x))is one of the most critical contaminants in the air,and the control of NO_(x)emission from diesel vehicles is very important.Cu-based small-pore zeolites have already been applied for NO_(x)abatement on diesel vehicles.Among the small-pore zeolites,Cu-SSZ-50 catalysts with good NH_(3)-SCR catalytic activity were believed to have potential for application.In this study,a one-pot synthesis method for Cu-SSZ-50 catalysts was developed for the first time,using the co-templates of Cu-TEPA and 2,6-dimethyl-N-methylpyridinium hydroxide.In this synthesis method,Cu-SSZ-50 with various Cu contents can be obtained by adjusting the amount of Cu-TEPA without the need for a further after-treatment process.The addition of Cu-TEPA affected the framework atoms and Cu species,and a lower Si/Al ratio and more SCR active Cu species were obtained.The synthesized catalyst with a Cu/Al ratio of 0.40 exhibited over 90%NO_(x)conversion between 200℃and 450℃for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).Meanwhile,over 80%NO_(x)conversion could be obtained from 250℃to 450℃after hydrothermal aging at 750℃for 16 h.In addition,both L-H and E-R mechanisms were proven to exist for the one-pot-synthesized Cu-SSZ-50 by in situ DRIFTS experiments.The simple synthesis procedure,excellent catalytic activity and hydrothermal stability brighten the prospects for the application of Cu-SSZ-50.