Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and trans...Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and transforming into toxic Cr(VI)due to the presence of manganese oxides in sediments.In this study,Citric Acid(CA)was selected as a representative organic ligand to prepare and characterize Cr(III)-CA complexes.The characteristics,mechanisms and environmental factors influencing the adsorption of Cr(Ⅲ)-CA on porous media(silts and fine sands)were investigated in the study.The results show that Cr(Ⅲ)coordinates with CA at a 1:1 molar ratio,forming stable and soluble Cr(Ⅲ)-CA complexes.Compared to Cr(III)ions,the equilibrium adsorption capacity of Cr(Ⅲ)-CA is an order of magnitude lower in silts and fine sands.The adsorption of Cr(Ⅲ)-CA in silts and fine sands is dominated by chemical adsorption of monolayers,following the pseudo-second-order kinetic equation and the Langmuir isotherm adsorption model.Varying contents of clay minerals and iron-aluminum oxides prove to be the main causes of differences in adsorption capacity of Cr(Ⅲ)-CA in silts and fine sands.Changes in solution pH affect the adsorption rate and capacity of Cr(Ⅲ)-CA by altering its ionic form.The adsorption process is irreversible and only minimally influenced by ionic strength,suggesting that inner-sphere complexation serves as the dominant Cr(Ⅲ)-CA adsorption mechanism.展开更多
In well stimulation treatments using hydrochloric acid,undesirable water-in-oil emulsion and acid sludge may produce and then cause operational problems in oil field development.The processes intensify in the presence...In well stimulation treatments using hydrochloric acid,undesirable water-in-oil emulsion and acid sludge may produce and then cause operational problems in oil field development.The processes intensify in the presence of Fe(Ⅲ),which are from the corroded surfaces of field equipment and/or iron-bearing minerals of the oil reservoir.In order to understand the reasons of the stability of acid emulsions,acid emulsions were prepared by mixing crude oil emulsion with 15% hydrochloric acid solutions with and without Fe(Ⅲ) and then separated into free and upper(water free) and intermediate(with water) layers.It is assumed that the oil phase of the free and upper layers contains the compounds which do not participate in the formation of acid emulsions,and the oil phase of the intermediate layers contains components involved in the formation of oil/acid interface.The composition of the oil phase of each layer of the emulsions was studied.It is found that the asphaltenes with a high content of sulfur,oxygen and metals as well the flocculated material of protonated non-polar oil components are concentrated at the oil/acid interface.In addition to the above,in the presence of Fe(Ⅲ) the Fe(Ⅲ)-based complexes with polar groups of asphaltenes are formed at the acid/oil interface,contributing to the formation of armor films which enhance the emulsion stability.展开更多
THE mobilization and transport processes of gold are associated with gold complexes, such as hydroxides,chlorides, hydrogen sulfide, thiosulphate and organic matter. The newest thermodynamic data ofgold hydrolysis sho...THE mobilization and transport processes of gold are associated with gold complexes, such as hydroxides,chlorides, hydrogen sulfide, thiosulphate and organic matter. The newest thermodynamic data ofgold hydrolysis show that the gold solubility is controlled by Au(OH)·H<sub>2</sub>O rather than by AuCl<sub>4</sub><sup>-</sup> in mostof the supergene water environment. The deposition process of gold is related to the changes of physicaland chemical properties in the environment, and to sorption. A few studies have been done on thesorption of gold complexes on Fe oxides, metal sulfides, Mn oxide and humic acid, respectively. Butno comparison among their sorption has been made under the same experimental conditions. This study deals with the sortition of Au (Ⅲ) chloride, Au (Ⅰ) chloride and thiosulphate展开更多
Because of the toxicity of Gd(Ⅲ)complexes and the poor T1 magnetic resonance imaging(MRI)contrast of superparamagnetic iron oxide,the development of new stable,non-toxic,and efficient contrast agents is desirable.Her...Because of the toxicity of Gd(Ⅲ)complexes and the poor T1 magnetic resonance imaging(MRI)contrast of superparamagnetic iron oxide,the development of new stable,non-toxic,and efficient contrast agents is desirable.Herein,tannic acid(TA),a large natural polyphenol,and bovine serum albumin(BSA)were used to construct non-toxic Fe(Ⅲ)complexes with increased relaxivity based on a strategy slowing the molecular spin.Compared with the commercial T1 contrast agent Magnevist■,TA-Fe@BSA not only exhibits comparable T1 MRI contrast enhancement under 0.5,1 and 7 T magnetic fields both in vitro and in vivo,but also has better stability and biocompatibility.Moreover,TA-Fe@BSA with near-infrared(NIR)absorption demonstrates efficient tumor ablation via photothermal effects.These results demonstrate their strong potential as an alternative T1 MRI contrast agent and tumor theranostics agent in clinical settings.展开更多
基金financially supported jointly by Natural Science Foundation of Fujian Province of China(NO.2023J01227)Natural Science Foundation of Hebei Province(NO.D2020504003)Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey(NO.SK202303).
文摘Trivalent chromium(Cr(Ⅲ))can form stable soluble complexes with organic components,altering its adsorption properties in the water-soil environment.This increases the risk of Cr(Ⅲ)migrating to deeper soils and transforming into toxic Cr(VI)due to the presence of manganese oxides in sediments.In this study,Citric Acid(CA)was selected as a representative organic ligand to prepare and characterize Cr(III)-CA complexes.The characteristics,mechanisms and environmental factors influencing the adsorption of Cr(Ⅲ)-CA on porous media(silts and fine sands)were investigated in the study.The results show that Cr(Ⅲ)coordinates with CA at a 1:1 molar ratio,forming stable and soluble Cr(Ⅲ)-CA complexes.Compared to Cr(III)ions,the equilibrium adsorption capacity of Cr(Ⅲ)-CA is an order of magnitude lower in silts and fine sands.The adsorption of Cr(Ⅲ)-CA in silts and fine sands is dominated by chemical adsorption of monolayers,following the pseudo-second-order kinetic equation and the Langmuir isotherm adsorption model.Varying contents of clay minerals and iron-aluminum oxides prove to be the main causes of differences in adsorption capacity of Cr(Ⅲ)-CA in silts and fine sands.Changes in solution pH affect the adsorption rate and capacity of Cr(Ⅲ)-CA by altering its ionic form.The adsorption process is irreversible and only minimally influenced by ionic strength,suggesting that inner-sphere complexation serves as the dominant Cr(Ⅲ)-CA adsorption mechanism.
文摘In well stimulation treatments using hydrochloric acid,undesirable water-in-oil emulsion and acid sludge may produce and then cause operational problems in oil field development.The processes intensify in the presence of Fe(Ⅲ),which are from the corroded surfaces of field equipment and/or iron-bearing minerals of the oil reservoir.In order to understand the reasons of the stability of acid emulsions,acid emulsions were prepared by mixing crude oil emulsion with 15% hydrochloric acid solutions with and without Fe(Ⅲ) and then separated into free and upper(water free) and intermediate(with water) layers.It is assumed that the oil phase of the free and upper layers contains the compounds which do not participate in the formation of acid emulsions,and the oil phase of the intermediate layers contains components involved in the formation of oil/acid interface.The composition of the oil phase of each layer of the emulsions was studied.It is found that the asphaltenes with a high content of sulfur,oxygen and metals as well the flocculated material of protonated non-polar oil components are concentrated at the oil/acid interface.In addition to the above,in the presence of Fe(Ⅲ) the Fe(Ⅲ)-based complexes with polar groups of asphaltenes are formed at the acid/oil interface,contributing to the formation of armor films which enhance the emulsion stability.
文摘THE mobilization and transport processes of gold are associated with gold complexes, such as hydroxides,chlorides, hydrogen sulfide, thiosulphate and organic matter. The newest thermodynamic data ofgold hydrolysis show that the gold solubility is controlled by Au(OH)·H<sub>2</sub>O rather than by AuCl<sub>4</sub><sup>-</sup> in mostof the supergene water environment. The deposition process of gold is related to the changes of physicaland chemical properties in the environment, and to sorption. A few studies have been done on thesorption of gold complexes on Fe oxides, metal sulfides, Mn oxide and humic acid, respectively. Butno comparison among their sorption has been made under the same experimental conditions. This study deals with the sortition of Au (Ⅲ) chloride, Au (Ⅰ) chloride and thiosulphate
基金the National Natural Science Foundation of China(91959105 and 21671135)Shanghai Sailing Program(19YF1436200)+2 种基金Shanghai Rising-Star Program(17QA1402600)Shanghai Talent Development Fund(2018082)Shanghai Engineering Research Center of Green Energy Chemical Engineering(18DZ2254200)。
文摘Because of the toxicity of Gd(Ⅲ)complexes and the poor T1 magnetic resonance imaging(MRI)contrast of superparamagnetic iron oxide,the development of new stable,non-toxic,and efficient contrast agents is desirable.Herein,tannic acid(TA),a large natural polyphenol,and bovine serum albumin(BSA)were used to construct non-toxic Fe(Ⅲ)complexes with increased relaxivity based on a strategy slowing the molecular spin.Compared with the commercial T1 contrast agent Magnevist■,TA-Fe@BSA not only exhibits comparable T1 MRI contrast enhancement under 0.5,1 and 7 T magnetic fields both in vitro and in vivo,but also has better stability and biocompatibility.Moreover,TA-Fe@BSA with near-infrared(NIR)absorption demonstrates efficient tumor ablation via photothermal effects.These results demonstrate their strong potential as an alternative T1 MRI contrast agent and tumor theranostics agent in clinical settings.