期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Radiation-induced cross-linking:a novel avenue to permanent 3D modification of polymeric membranes 被引量:4
1
作者 Yu Gu Bo-Wu Zhang +4 位作者 Zhen Guo Ji-Hao Li Ming Yu Lin-Fan Li Jing-Ye Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第7期31-45,共15页
Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simp... Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simple but effective 3D modification approach was designed for permanently functionalizing polymeric membranes by directly cross-linking polyvinyl alcohol(PVA)under gamma-ray irradiation at room temperature without any additives.After the modification,a PVA layer was constructed on the membrane surface and the pore inner surface of polyvinylidene fluoride(PVDF)membranes.This endowed them with good hydrophilicity,low adsorption of protein model foulants,and easy recoverability properties.In addition,the pore size and distribution were customized by controlling the PVA concentration,which enhanced the rejection ability of the resultant membranes and converted them from microfiltration to ultrafiltration.The crosslinked PVA layer was equipped with the resultant membranes with good resistance to chemical cleaning by acidic,alkaline,and oxidative reagents,which could greatly prolong the membrane service lifetime.Furthermore,this approach was demonstrated as a universal method to modify PVDF membranes with other hydrophilic macromolecular modifiers,including polyethylene glycol,sodium alginate,and polyvinyl pyrrolidone.This modification of the membranes effectively endowed them with good hydrophilicity and antifouling properties,as expected. 展开更多
关键词 Ultrafiltration membrane ANTIFOULING 3D modification GAMMA-RAY cross-linking
下载PDF
Study of action mechanisms and properties of Cr^(3+) cross-linked polymer solution with high salinity 被引量:8
2
作者 Lu Xiangguo Liu Jinxiang +2 位作者 Wang Rongjian Liu Yigang Zhang Song 《Petroleum Science》 SCIE CAS CSCD 2012年第1期75-81,共7页
Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic l... Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic light scattering system, and core flow device have been used to measure the viscosity, viscoelasticity, polymer coil dimensions, molecular configuration, flow characteristics, and profile modification. The results show that, under conditions of high salinity and low HPAM and Cr^3+ concentrations, cross-linking mainly occurred between different chains of the same HPAM molecule in the presence of Cr^3+, and a cross-linked polymer (CLP) system with a local network structure was formed. Compared with an HPAM solution of the same concentration, the apparent viscosity of the CLP solution increased slightly or remained almost unchanged, but its viscoelasticity (namely storage modulus, loss modulus, and first normal stress difference) increased, and the resistance coefficient and residual resistance coefficient increased significantly. This indicates that the CLP solution exhibits a strong capability to divert the sequentially injected polymer flood from high-permeability zones to low- permeability zones in a reservoir. Under the same HPAM concentration conditions, the dimensions of polymer coils in the CLP solution increased slightly compared with the dimensions of polymer coils in HPAM solution, which were smaller than the rock pores, indicating that the cross-linked polymer solution was well adapted to reservoir rocks. Core flood experiments show that at the same cost of reagent, the oil recovery by CLP injection (HPAM-1, Cr^3+ as the cross linker) is 3.1% to 5.2% higher than that by HPAM- 2 injection. 展开更多
关键词 cross-linked polymer solution apparent viscosity VISCOELASTICITY polymer coil dimension molecular configuration flow characteristics profile modification
下载PDF
Cross-linkedα-amylase aggregates on Fe3O4 magnetic nanoparticles modified with polydopamine/polyethyleneimine for efficient hydrolysis of starch
3
作者 Jiandong Cui Xiuming Tang +3 位作者 Qingqing Ma Yuyan Chang Qunli Zhang Shiru Jia 《Particuology》 SCIE EI CAS CSCD 2024年第7期98-105,共8页
In this workα-amylase was immobilized on magnetic Fe3O4 nanoparticles with polyethylenimine(PEI)/polydopamine(PDA)coating or 3-aminopropyl triethoxysilane(APTES)for the first time via adsorption–precipitation–cross... In this workα-amylase was immobilized on magnetic Fe3O4 nanoparticles with polyethylenimine(PEI)/polydopamine(PDA)coating or 3-aminopropyl triethoxysilane(APTES)for the first time via adsorption–precipitation–cross-linking.Compared with the freeα-amylase,the resultant magnetic cross-linkedα-amylase aggregates(PEI/PDA-M-CLEAs and N-M-CLEAs)exhibited excellent thermal and storage stability as well as pH stability.After storage at 25°C for 60 days,freeα-amylase only retained 60%of its initial activity,while PEI/PDA-M-CLEAs and N-M-CLEAs retained 80%and 78%of their initial activities,respectively.Furthermore,N-M-CLEAs and PEI/PDA-M-CLEAs showed good reusability.After 6 repeated uses,PEI/PDA-M-CLEAs and N-M-CLEAs still maintained 65%and 62%of their initial activities,respectively.Especially,PEI/PDA-M-CLEAs and N-M-CLEAs exhibited higher starch hydrolysis efficiency than freeα-amylase.The maximum dextrose equivalent(DE)values of starch hydrolysis by PEI/PDA-M-CLEAs and N-M-CLEAs reached 29.24%and 28.79%within 90 min,respectively.However,the maximum DE values of starch hydrolysis by the freeα-amylase was only 27.89%even in 150 min.The magnetic cross-linkedα-amylase aggregates could be introduced as effective biocatalyst for industrial applications in production of maltose syrups. 展开更多
关键词 Α-AMYLASE Magnetic nanoparticles Functional modification Magnetic cross-linked enzyme aggregates Hydrolysis of starch
原文传递
Preparation of a new animal glue binder for foundry use 被引量:3
4
作者 Wei-hua Liu Tian-shu Wang +2 位作者 Ying-min Li Yu-yan Ren Wen-hui Huo 《China Foundry》 SCIE 2016年第4期238-242,共5页
A new casting binder was prepared based on an animal bone glue. In order to overcome the disadvantages of the animal glue agglomeration at room temperature, an alkaline decomposition process was used, with acrylic aci... A new casting binder was prepared based on an animal bone glue. In order to overcome the disadvantages of the animal glue agglomeration at room temperature, an alkaline decomposition process was used, with acrylic acid, ammonium persulfate, and glucose as modifiers of the animal glue to obtain a high strength of binding. In the process of alkaline decomposition, Na OH was used as the catalyst with the addition of 3, 4, 5, 6, 7, 8wt.%, respectively, into 100 g of animal glue and the alkaline decomposition temperature was set for 30, 40, 50, 60, and 70 °C, with an identical decomposition time of 30 min, in order to reduce viscosity of the animal glue and maintain a liquid state at room temperature. The added acrylic acid, ammonium persulfate and glucose were determined through an orthogonal experiment. The experimental results are as fol ows: the optimal amount of NaOH addition is 5wt.%; alkaline decomposition temperature is 50 °C; the optimal weight ratio of three kinds of modifiers to animal glue is acrylic acid : ammonium persulfate : glucose : animal glue = 30:3:15:100; the modification reaction should be performed at 75 °C with a reaction time of 90 min. With the addition of 3% binder to sand, a final tensile strength of about 3.36 MPa and surface tension value of about 25.387 m N·m^(-1) are achieved; the gas evolution at 850 °C is 19 ml·g^(-1) and the residual strength after high temperature(700 ■× 10 min) is 0 MPa. Finally, the new binder was characterized and analyzed by means of element analysis and an IR infrared spectrum. 展开更多
关键词 animal glue alkaline decomposition modification graft copolymerization ETHERIFICATION cross-linking
下载PDF
Highly stretchable,soft and sticky PDMS elastomer by solvothermal polymerization process 被引量:1
5
作者 Jin Huang Yuchun Cai +3 位作者 Chengyuan Xue Jin Ge Haoyu Zhao Shu-Hong Yu 《Nano Research》 SCIE EI CSCD 2021年第10期3636-3642,共7页
Siloxane rubber shows attractive properties of high stability,elasticity and transparency.Besides,the regulation of its properties renders it widely used in many application fields.However,most of the reported perform... Siloxane rubber shows attractive properties of high stability,elasticity and transparency.Besides,the regulation of its properties renders it widely used in many application fields.However,most of the reported performance improvement methods of siloxane rubber focus on the change of chemical composition of siloxane rubber,including the design of molecular chain and the introduction of other compounds,etc.Such a strategy is still faced with many limitations in practical application.In this work,on the premise of not changing the chemical composition of siloxane rubber,we propose a facile solvothermal polymerization process to change the structure of cross-linking networks,so as to obtain the siloxane rubber with controllable mechanical properties.Compared to the normal curing method,we realized polydimethylsiloxane elastomer(PDMS)with maximum elongation of more than 3,000%(>10 times of normally cured one)and tensile modulus lower than 0.15 MPa(<1/10 of normally cured one).In addition to superior stretchability,it gains extra high softness,stickiness and sensitive response to organic solvents.Based on our solvothermal cured PDMS,its applications in oil collection and organic solvent sensor have been demonstrated.It is expected that this method can be readily utilized widely and shows great application potentials. 展开更多
关键词 polydimethylsiloxane elastomer(PDMS)property modification solvothermal polymerization controllable cross-linking networks organic solvent sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部