期刊文献+
共找到3,837篇文章
< 1 2 192 >
每页显示 20 50 100
Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding 被引量:6
1
作者 Li-min Zhang Bang-wu liu Dong-bai Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期725-730,共6页
A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),... A novel approach to produce an intermetallic composite coating was put forward.The microstructure,microhardness,and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD),scanning electron microscopy (SEM),energy dispersive spectrum (EDS) analysis,microhardness test,and ball-on-disc wear experiment.XRD results indicate that some new phases FeAl,Fe0.23Ni0.77Al,and Ni3Al exit in the composite coating with the Al2O3 addition.SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures.The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating.The formation mechanism of the intermetallic compounds was also investigated. 展开更多
关键词 composite coatings plasma cladding intermetallics microhardness wear resistance
下载PDF
Fe-Al金属间化合物的第一性原理研究综述
2
作者 陈维铅 喇培清 +1 位作者 李亚明 许世鹏 《材料保护》 CAS CSCD 2024年第7期142-153,共12页
Fe-Al金属间化合物具有密度低、比强度高、抗高温氧化和耐腐蚀性良好等优点,且成本低廉,成为镍基高温合金潜在的替代结构材料。综述了利用第一性原理计算研究元素掺杂/微合金化对Fe-Al金属间化合物及涂层的室温脆性、高温强度、界面结... Fe-Al金属间化合物具有密度低、比强度高、抗高温氧化和耐腐蚀性良好等优点,且成本低廉,成为镍基高温合金潜在的替代结构材料。综述了利用第一性原理计算研究元素掺杂/微合金化对Fe-Al金属间化合物及涂层的室温脆性、高温强度、界面结合、抗高温氧化及耐腐蚀性能影响的研究进展,设计了第一性原理研究B2型Fe-Al合金耐氯化盐腐蚀机理的理论计算方案,展望了第一性原理计算应用于Fe-Al合金及涂层材料研究的发展方向。 展开更多
关键词 第一性原理 fe-al金属间化合物 力学性能 耐腐蚀性 界面强度
下载PDF
Characterizations on the instantaneously formed Ni-containing intermetallics in magnesium alloys 被引量:1
3
作者 Shuhui Lv Qiang Yang +1 位作者 Fanzhi Meng Jian Meng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2991-2998,共8页
Instantaneous reactions of Al,Mn,Zn,Zr and Y with Ni by mixing the prepared Mg-8Al-0.4Mn,Mg-6Zn-2Y-0.5Zr and Mg-0.6Ni melts were investigated in this work to reveal the underlying mechanisms of their effects on the re... Instantaneous reactions of Al,Mn,Zn,Zr and Y with Ni by mixing the prepared Mg-8Al-0.4Mn,Mg-6Zn-2Y-0.5Zr and Mg-0.6Ni melts were investigated in this work to reveal the underlying mechanisms of their effects on the removal of Ni impurity.The results indicate three Ni-containing intermetallics,namely Al_(4)NiY,Al_(4)Ni(Y,Zr)and Al_(31)Ni_(2)Mn_(6).The former two phases present lath-like and have a relatively larger size(>20μm in length)than the latest one which is granular with the diameter of∼120 nm.This illustrates that Al and Y(/Zr)can efficiently remove Ni by forming Al_(4)NiY or Al_(4)Ni(Y,Zr)which would precipitate to the bottom of the melt.Furthermore,adding Y into Mg-Al based alloys can simultaneously remove Fe and Ni,which contributes their excellent corrosion resistance.Finally,this paper proposes two methods helped to efficiently remove Ni for both Mg-Al based alloys and Al-free Mg alloys,and both of them are also benefit to improve alloys’strength. 展开更多
关键词 Magnesium alloys intermetallics Nickel Transmission electron microscopy(TEM) IMPURITY
下载PDF
High-entropy L1_(2)-Pt(FeCoNiCuZn)_(3) intermetallics for ultrastable oxygen reduction reaction 被引量:1
4
作者 Qian Zhang Tao Shen +5 位作者 Min Song Shuang Wang Jialin Zhang Xiao Huang Shanfu Lu Deli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期158-166,I0004,共10页
Enhancing the stability of Pt-based electrocatalysts for the sluggish cathodic oxygen reduction reaction(ORR)is critical for proton exchange membrane fuel cells(PEMFCs).Herein,high-entropy intermetallic(HEI)L1_(2)-Pt(... Enhancing the stability of Pt-based electrocatalysts for the sluggish cathodic oxygen reduction reaction(ORR)is critical for proton exchange membrane fuel cells(PEMFCs).Herein,high-entropy intermetallic(HEI)L1_(2)-Pt(FeCoNiCuZn)3is designed for durable ORR catalysis.Benefiting from the unique HEI structure and the enhanced intermetallic phase stability,Pt(FeCoNiCuZn)3/C nanoparticles demonstrate significantly improved stability over Pt/C and PtCu_(3)/C catalysts.The Pt(FeCoNiCuZn)3/C exhibits a negligible decay of the half-wave potential during 30,000 potential cycles from 0.6 to 1.0 V,whereas Pt/C and PtCu_(3)/C are negatively shifted by 46 and 36 m V,respectively.Even after 10,000 cycles at potential up to 1.5 V,the mass activity of Pt(FeCoNiCuZn)3/C still shows~70%retention.As evidenced by the structural characterizations,the HEI structure of Pt(FeCoNiCuZn)3/C is well maintained,while PtCu_(3)/C nanoparticles undergo severe Cu leaching and particle growth.In addition,when assembled Pt(FeCoNiCuZn)3/C as the cathode in high-temperature PEMFC of 160℃,the H_(2)-O_(2)fuel cell delivers almost no degradation even after operating for 150 h,demonstrating the potential for fuel cell applications.This work provides a facile design strategy for the development of high-performance ultrastable electrocatalysts. 展开更多
关键词 High-entropy intermetallics Pt-based electrocatalysts Oxygen reduction reaction High stability
下载PDF
Sub-nanometer Pt_(2)In_(3) intermetallics as ultra-stable catalyst for propane dehydrogenation
5
作者 Yanan Xing Guiyue Bi +11 位作者 Xiaoli Pan Qike Jiang Yuanlong Tan Yang Su Leilei Kang Bonan Li Lin Li Aiqin Wang Jingyuan Ma Xiaofeng Yang Xiao Yan Liu Tao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期304-312,I0009,共10页
Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial ... Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking. 展开更多
关键词 Propane dehydrogenation PROPYLENE Pt-In catalyst intermetallic compounds Pt_(2)ln_(3)
下载PDF
Accelerated intermetallic phase amorphization in a Mg-based high-entropy alloy powder
6
作者 Prince Sharma Purvam Mehulkumar Gandhi +4 位作者 Kerri-Lee Chintersingh Mirko Schoenitz Edward L.Dreizin Sz-Chian Liou Ganesh Balasubramanian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1792-1798,共7页
We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expe... We describe a novel mechanism for the synthesis of a stable high-entropy alloy powder from an otherwise immiscible Mg-Ti rich metallic mixture by employing high-energy mechanical milling.The presented methodology expedites the synthesis of amorphous alloy powder by strategically injecting entropic disorder through the inclusion of multi-principal elements in the alloy composition.Predictions from first principles and materials theory corroborate the results from microscopic characterizations that reveal a transition of the amorphous phase from a precursor intermetallic structure.This transformation,characterized by the emergence of antisite disorder,lattice expansion,and the presence of nanograin boundaries,signifies a departure from the precursor intermetallic structure.Additionally,this phase transformation is accelerated by the presence of multiple principal elements that induce severe lattice distortion and a higher configurational entropy.The atomic size mismatch of the dissimilar elements present in the alloy produces a stable amorphous phase that resists reverting to an ordered lattice even on annealing. 展开更多
关键词 High-entropy alloy High-energy milling Antisite disorder AMORPHOUS intermetalLIC
下载PDF
Tin-mediated carbon-confined Pt_(3)Co ordered intermetallic nanoparticles as highly efficient and durable oxygen reduction electrocatalysts for rechargeable zinc-air batteries
7
作者 Ruotao Yang Chuhan Dai +4 位作者 Laiwei Zhang Ruirui Wang Kui Yin Bo Liu Ziliang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期169-179,共11页
The development of electrocatalysts for the oxygen reduction reaction(ORR) that bears high selectivity,exceptional activity,and long-term stability is crucial for advancing various green energy technologies.Intermetal... The development of electrocatalysts for the oxygen reduction reaction(ORR) that bears high selectivity,exceptional activity,and long-term stability is crucial for advancing various green energy technologies.Intermetallics composed of platinum and transition metals are considered to be promising candidates for this purpose.However,they typically face challenges such as unfavorable intrinsic activity and a propensity for particle aggregation,diminishing their ORR performance.Against this backdrop,we present our findings on a N-doped carbon confined Pt_(3)Co intermetallic doped with p-block metal tin(Pt_(3)Co_(x)Sn_(1-x)/NC).The introduction of Sn induces lattice strain due to its larger atomic size,which leads to the distortion of the Pt_(3)Co lattice structure,while the coupling of carbon polyhedra inhibits the particle aggregation.The optimized Pt_(3)Co_(0.8)Sn_(0.2)/NC catalyst demonstrates an impressive half-wave potential of 0.86 V versus RHE,surpassing both Pt_(3)Co/NC and Pt_(3)Sn/NC catalysts.Moreover,the Pt_(3)Co_(0.8)Sn_(0.2)/NC exhibits a mass-specific activity as high as 1.4 A mg_(Pt)^(-1),ranking it in the top level among the intermetallicsbased ORR electrocatalysts.When further employed as a cathode material in a self-assembled zinc-air battery,it shows stable operation for over 80 h.These results underscore the significant impact of lattice strain engineering through the strategic doping of p-block metal in the carbon-confined Pt_(3)Co intermetallic,thereby enhancing the catalytic efficiency for the ORR. 展开更多
关键词 Lattice strain Pt-based intermetallic N-doped carbon Electrocatalysis Oxygen reduction reaction
下载PDF
扫描速度对激光熔覆Fe-Al合金熔覆层组织及性能的影响
8
作者 姚文博 刘忱 +1 位作者 商硕 刘常升 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期170-178,共9页
为提高工程用高强钢的耐蚀性并降低使用材料成本,采用光纤激光器在Q960E高强钢表面以同轴送粉工艺制备Fe-Al合金熔覆层,研究不同扫描速度对组织及耐蚀性的影响.结果表明,熔覆层的晶粒形态与元素分布及含量都受到扫描速度的影响.物相主要... 为提高工程用高强钢的耐蚀性并降低使用材料成本,采用光纤激光器在Q960E高强钢表面以同轴送粉工艺制备Fe-Al合金熔覆层,研究不同扫描速度对组织及耐蚀性的影响.结果表明,熔覆层的晶粒形态与元素分布及含量都受到扫描速度的影响.物相主要由DO3结构的Fe3Al相和B2结构的FeAl相以共晶形式组成.熔覆层的硬度随扫描速度增加受晶粒细化的影响逐渐提高.3种扫描速度下的熔覆层自腐蚀电位随扫描速度增加先上升后下降,自腐蚀电流密度先减小后增大,经过极化后的熔覆层表面点蚀坑随扫描速度的增加先由深变浅,后点蚀坑面积扩大. 展开更多
关键词 激光熔覆 fe-al合金 扫描速度 微观组织 电化学性能
下载PDF
Porous TiFe_(2) intermetallic compound fabricated via elemental powder reactive synthesis
9
作者 Qian Zhao Zhenli He +3 位作者 Yuehui He Yue Qiu Zhonghe Wang Yao Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期764-772,共9页
Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The... Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation. 展开更多
关键词 TiFe2 intermetallic compound porous materials reactive synthesis corrosion behavior hydrogen evolution reaction
下载PDF
Optimization of chemistry and process parameters for control of intermetallic formation in Mg sludges
10
作者 Y.Fu G.G.Wang +4 位作者 A.Hu Y.Li K.B.Thacker J.P.Weiler H.Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1431-1448,共18页
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)... Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation. 展开更多
关键词 Magnesium sludge Al-Mn intermetallic OPTIMIZATION Taguchi method Sludge factor Chemical composition Process parameter
下载PDF
Transforming Cu into Cu_(2)O/RuAl intermetallic heterojunction for lowering the thermodynamic energy barrier of the CO_(2) reduction and evolution reactions in Li-CO_(2) battery
11
作者 Wenqing Ma Jiagang Hou +4 位作者 Siyu Liu Tianzhen Jian Jianping Ma Caixia Xu Hong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期531-540,共10页
The Li-CO_(2) battery has been under the spotlight of future battery technologies since it can achieve CO_(2)utilization and energy conversion simultaneously.However,its advancement is hampered by poor energy efficien... The Li-CO_(2) battery has been under the spotlight of future battery technologies since it can achieve CO_(2)utilization and energy conversion simultaneously.However,its advancement is hampered by poor energy efficiency and limited reversibility due to the sluggish kinetics of the CO_(2) reduction and evolution reactions.Herein,a multiscale nanoporous interpenetrating phase nanohybrid of RuAl intermetallic and Cu_(2)O(MP-Cu_(2)O/RuAl) was carved by driving synchronous phase and microstructure evolutions through dealloying of one RuCuAl master alloy.The built-in RuAl intermetallic and Cu_(2)O closely stack to form abundant nano-interfaces with revolutionized electronic structure,The theoretical simulations reveal that the Cu_(2)O/RuAl interface can distinctly reduce the energy barrier of the Li_(2)CO_(3) decomposition reaction,The interconnected pore channels with large surface area can enhance catalytic site accessibility,mass transfer,and uniform deposition of the discharge products.In situ differential electrochemical mass spectrometry discloses that the CO_(2)-to-electron ratio during charging coincides with the theoretical value of 3/4,demonstrating the high efficacy of MP-Cu_(2)O/RuAl in achieving the recycling of CO_(2).The dealloying protocol provides an affordable platform to empower transition metal oxides into high-efficiency electrocatalysts by hybridizing with metallic nano-sponge for advancing the application of Li-CO_(2)batteries. 展开更多
关键词 intermetalLIC Cu_(2)O Heterostructure NANOPOROUS Lithium–CO_(2)battery
下载PDF
低剩磁高Al含量Fe-Al合金的制备及性能研究
12
作者 王雪峰 《化工时刊》 CAS 2024年第2期5-7,共3页
低剩磁高Al含量的Fe-Al合金是一类非常重要的金属结构材料,在工业生产中有着重要的用途。现代工业经济的飞速发展,使得对低剩磁高Al含量的Fe-Al合金制备技术和性能的深入研究变得更加重要。作者就低剩磁高Al含量Fe-Al合金的制备技术和... 低剩磁高Al含量的Fe-Al合金是一类非常重要的金属结构材料,在工业生产中有着重要的用途。现代工业经济的飞速发展,使得对低剩磁高Al含量的Fe-Al合金制备技术和性能的深入研究变得更加重要。作者就低剩磁高Al含量Fe-Al合金的制备技术和性能进行了深入的分析与研究。研究结果表明制取的低剩磁高Al含量Fe-Al合金材料性能优良,可以替代现在使用的晶粒取向Si-Fe合金。 展开更多
关键词 低剩磁 fe-al 合金 制备技术 性能
下载PDF
Ultrafine ordered L1_(2)-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells
13
作者 Enping Wang Liuxuan Luo +12 位作者 Yong Feng Aiming Wu Huiyuan Li Xiashuang Luo Yangge Guo Zehao Tan Fengjuan Zhu Xiaohui Yan Qi Kang Zechao Zhuang Daihui Yang Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期157-165,I0005,共10页
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction... The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts. 展开更多
关键词 Platinum Cobalt Manganese Oxygen reduction reaction Ordered intermetallic L1_(2)atomic structure Proton-exchange membrane fuel cell
下载PDF
Effects of Fe-Al intermetallic compounds on interfacial bonding of clad materials 被引量:13
14
作者 王谦 冷雪松 +1 位作者 杨天豪 闫久春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期279-284,共6页
The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t... The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials. 展开更多
关键词 Al-Fe clad materials interfacial bonding fe-al intermetallic compounds interface structure mechanical properties
下载PDF
Fabrication of porous Fe Al-based intermetallics via thermal explosion 被引量:8
15
作者 Ya-nan LIU Zhi SUN +2 位作者 Xiao-ping CAI Xin-yang JIAO Pei-zhong FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第6期1141-1148,共8页
Porous FeAl-based intermetallics were fabricated by thermal explosion(TE) from Fe and Al powders. The effects of sintering temperature on phase constitution, pore structure and oxidation resistance of porous Fe-Al i... Porous FeAl-based intermetallics were fabricated by thermal explosion(TE) from Fe and Al powders. The effects of sintering temperature on phase constitution, pore structure and oxidation resistance of porous Fe-Al intermetallics were systematically investigated. Porous Fe-Al materials with high open porosity(65%) are synthesized via a low-energy consumption method of TE at a temperature of 636 ℃ and FeAl intermetallic is evolved as dominant phase in sintered materials at 1000 ℃. The porous materials are composed of interconnected skeleton, large pores among skeleton and small pores in the interior of skeleton. The interstitial pores in green powder compacts are the important source of large pores of porous Fe-Al intermetallics, and the in-situ pores from the melting and flowing of aluminum powders are also significant to the formation of large pores. Small pores are from the precipitation of Fe-Al intermetallics particles. In addition, the porous specimens exhibit high resistance to oxidation at 650 ℃ in air. 展开更多
关键词 fe-al intermetallics porous material thermal explosion phase transition
下载PDF
Effect of Fe and Mo additions on microstructure and mechanical properties of TiAl intermetallics 被引量:9
16
作者 邱从章 刘咏 +3 位作者 黄岚 张伟 刘彬 卢斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期521-527,共7页
The ductility of TiAl intermetallics can be improved through stabilizing the ductile β phase.New β-stabilized Ti-45Al-xFe-yMo(x,y=1,2,3,4) alloys were designed through adding the β stabilizing elements Fe and Mo.... The ductility of TiAl intermetallics can be improved through stabilizing the ductile β phase.New β-stabilized Ti-45Al-xFe-yMo(x,y=1,2,3,4) alloys were designed through adding the β stabilizing elements Fe and Mo.The microstructural evolution and deformation behavior of the Ti-45Al-xFe-yMo alloys were investigated.The results show that the amount of β(B2) phase is increased with the increase of alloying elements.Mo shows a higher capability for stabilizing the β phase than Fe.In the optimized Ti-45Al-3Fe-2Mo alloy,the grains are significantly refined to about 12 μm,and this alloy shows a very good hot ductility at the elevated temperature. 展开更多
关键词 TiAl intermetallics FE MO β phase grain refinement
下载PDF
Effect of pore structures on corrosion resistance of porous Ni_3Al intermetallics 被引量:5
17
作者 吴靓 贺跃辉 +3 位作者 江垚 曾毅 肖逸峰 南博 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3509-3516,共8页
Porous Ni3Al intermetallics were fabricated by elemental powder reactive synthesis method, using carbamide powders as space holders. Corrosion behavior of porous Ni3Al intermetallics was investigated in a 6 mol/L KOH ... Porous Ni3Al intermetallics were fabricated by elemental powder reactive synthesis method, using carbamide powders as space holders. Corrosion behavior of porous Ni3Al intermetallics was investigated in a 6 mol/L KOH solution using electrochemical methods and immersion test. Effect of porous structures on the corrosion behavior of the porous Ni3Al intermetallics was studied. The results indicate that the porous Ni3Al intermetallics with higher porosities suffer more serious corrosion than the ones with lower porosities because the complicated interconnected porous structures and the large true surface areas exist in the samples with a higher porosity. But the corrosion rates of the porous Ni3Al intermetallics are not proportional to the true surface areas. The reason is that the pore size, pore size distribution and pore shape of the porous Ni3Al intermetallics change with the increasing porosity. All the porous Ni3Al intermetallics with different porosities exhibit excellent corrosion resistance in a strong alkali solution. 展开更多
关键词 nickel aluminide intermetallic CORROSION pore structure
下载PDF
Tortuosity factor for porous FeAl intermetallics fabricated by reactive synthesis 被引量:11
18
作者 高海燕 贺跃辉 +2 位作者 ZOU Jin 徐南平 C.T.LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2179-2183,共5页
The tortuosity factor is the most critical parameter for the pore characteristic of porous materials. The tortuosity factor for porous FeAl intermetallics was studied based on the Darcy law and Hagen-Poiseuille equati... The tortuosity factor is the most critical parameter for the pore characteristic of porous materials. The tortuosity factor for porous FeAl intermetallics was studied based on the Darcy law and Hagen-Poiseuille equation. Porous stainless steel with the same pore structure parameter as porous FeAl was fabricated by powder metallurgy method for comparison. The results show that the tortuosity factor of porous FeAl intermetallics is smaller than that of porous stainless steel when their pore structure parameters are the same. The average tortuosity factor is 2.26 for the porous FeAl material and 2.92 for the porous stainless steel, calculated by Hagen-Poiseuille equation. The reason of the different tortuosity factors for porous FeAl and porous stainless steel was also explored through studying the pore formation mechanisms of the two types of porous materials. 展开更多
关键词 FEAL intermetallics porous material tortuosity factor
下载PDF
Intermetallics and phase relations of Mg-Zn-Ce alloys at 400 ℃ 被引量:4
19
作者 黄明丽 李洪晓 +3 位作者 丁桦 包立 马晓斌 郝士明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期539-545,共7页
The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear t... The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear ternary compound(T phase),whose chemical formula is(Mg1-xZnx)11Ce.The range of Zn content in T phase is from 9.6% to 43.6%(molar fraction).The crystal structure of T phase is C-centered orthorhombic lattice with lattice parameters of a=0.96-1.029 nm,b=1.115-1.204 nm,c=0.940-1.015 nm.And the lattice parameters of T phase are decreasing a little with increasing Zn content.According to the results of composition and crystal structure,the maximal solubility of Zn in Mg12Ce is about 7.8%(molar fraction),and the chemical formula of the solid solution can be identified as(Mg1-xZnx)12Ce.The isothermal section of Mg-Zn-Ce system in Mg-rich corner at 400 ℃ was constructed. 展开更多
关键词 Mg-Zn-Ce system intermetallics crystal structure isothermal section
下载PDF
Dynamic behavior and fracture mode of TiAl intermetallics with different microstructures at elevated temperatures 被引量:2
20
作者 昝祥 贺跃辉 +1 位作者 汪洋 夏源明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期45-51,共7页
Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from ... Experimental studies were conducted on the tensile behaviors and fracture modes of TiAl(Ti-46.5Al-2Nb-2Cr) alloys with near gamma(NG) equiaxed and near lamellar(NL) microstructures over a temperature range from room temperature to 840 ℃ and a strain rate range of 0.001-1 350 s-1.The results indicate that the alloys are both temperature and strain rate dependent and they have a similar dependence.The dynamic strength is higher than the quasi-static strength but almost insensitive to high strain rate range of 320-1 350 s-1.The brittle-to-ductile transition temperature(BDTT) increases with increasing strain rates.NG TiAl yields obviously,while NL TiAl does not.Below BDTT,as the temperature increases,the fracture modes of the two alloys change from planar cleavage fracture to a mixture of transgranular and intergranular fractures,and finally to totally intergranular fracture. 展开更多
关键词 TiAl intermetallics high strain rate elevated temperature character tensile properties fracture mode
下载PDF
上一页 1 2 192 下一页 到第
使用帮助 返回顶部