Interfaces and surfaces of YBa_2Cu_3O_(7-x)(YBCO)-Ag have been studied by SEM-EDX and AES.No effect of Ag on 123 structure in X-ray diffraction pattern was observed for 0.4 mol Ag doped YBCO.AES analysis indicated tha...Interfaces and surfaces of YBa_2Cu_3O_(7-x)(YBCO)-Ag have been studied by SEM-EDX and AES.No effect of Ag on 123 structure in X-ray diffraction pattern was observed for 0.4 mol Ag doped YBCO.AES analysis indicated that Ag segregated on surface of YBCO and resulted in decrease of YBCO-metal lead resistance.In addition,solution and segregation of Ag as elemental state were often appeared on interfaces and surfaces of high temperature annealed YBCO,whether elemental Ag or compound Ag_2O and AgNO_3 adopted as doping material.展开更多
A NiO/β-Ga_(2)O_(3) heterojunction-gate field effect transistor(HJ-FET)is fabricated and it_(s)instability mechanisms are exper-imentally investigated under different gate stress voltage(V_(G,s))and stress times(t_(s...A NiO/β-Ga_(2)O_(3) heterojunction-gate field effect transistor(HJ-FET)is fabricated and it_(s)instability mechanisms are exper-imentally investigated under different gate stress voltage(V_(G,s))and stress times(t_(s)).Two different degradation mechanisms of the devices under negative bias stress(NBS)are identified.At low V_(G,s)for a short t_(s),NiO bulk traps trapping/de-trapping elec-trons are responsible for decrease/recovery of the leakage current,respectively.At higher V_(G,s)or long t_(s),the device transfer char-acteristic curves and threshold voltage(V_(TH))are almost permanently negatively shifted.This is because the interface dipoles are almost permanently ionized and neutralize the ionized charges in the space charge region(SCR)across the heterojunction inter-face,resulting in a narrowing SCR.This provides an important theoretical guide to study the reliability of NiO/β-Ga_(2)O_(3) hetero-junction devices in power electronic applications.展开更多
In the quest for the development of thermally stable,highly active and low-cost catalysts for use in catalyzed diesel particulate filter,nano-composites are new areas of research.Therefore,we reported the easy synthes...In the quest for the development of thermally stable,highly active and low-cost catalysts for use in catalyzed diesel particulate filter,nano-composites are new areas of research.Therefore,we reported the easy synthesis of spinel NiCo_(2)O_(4)/perovskite LaCoO_(3) nano-composite,and its individual oxides NiCo_(2)O_(4)and LaCoO_(3) for comparison.The detailed insights into the physio-chemical characteristics of formed NiCo_(2)O_(4)/LaCoO_(3) nano-composite were done based on various characterization analysis such as X-ray diffraction(XRD),Fourier transform infrared(FT-IR),N_(2) physiosorption,scanning electron microscopy-energy dispersive spectroscopy(SEM-EDX),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).The characterization analysis of NiCo_(2)O_(4)/LaCoO_(3) revealed the successful formation of a chemical interface possessing strong interfacial interaction,resulting in desirable physicochemical characteristics such as small crystallite size,abundant mesoporosity,high specific surface area and activation of surface lattice oxygen.Owing to the desirable characteristics,the activity results over NiCo_(2)O_(4)/LaCoO_(3) nano-composite showed the excellent CO oxidation performance and high soot oxidation activity,recyclability and thermal stability.This work mainly attempts to emphasize the effectiveness of the facile,inexpensive and conventionally used precipitation method for the successful formation of highly efficient nano-composites.展开更多
The interaction of MgO-MgAl_(2)O_(4)-based and MgO-Cr_(2)O_(3)-based refractories with X70 molten steel was studied by immersion experiments at 1560℃.The effects of immersion time(30 and 60 min)on the contents of tot...The interaction of MgO-MgAl_(2)O_(4)-based and MgO-Cr_(2)O_(3)-based refractories with X70 molten steel was studied by immersion experiments at 1560℃.The effects of immersion time(30 and 60 min)on the contents of total oxygen(TO),Al,Nb,Si,Mn,and Cr as well as the composition,number density,and size distribution of inclusions in the molten steel were investigated.The influence of the penetration and erosion degree of the molten steel to the refractory on the steel-refractory interface layer was analyzed.The results show that,at 1560℃,the MgO-MgAl_(2)O_(4)-based refractory can better control the contents of TO and the composition of molten steel compared with the MgO-Cr_(2)O_(3)-based refractory.The TO content is only 16×10^(-4) wt.%in the molten steel after reacted with the Mg0-MgAl_(2)O_(4)-based refractory at the end point of refining,4 accounting for 11.5%of that reacted with the MgO-Cr_(2)O_(3)-based refractory(139×10^(-4) wt.%).The number density of inclusions is only 14 mm^(-2),and the average size ofinclusions is only 1.31μm,with thelargest proportion of inclusions in 1-2μm(70%).The Al_(2)O_(3)-MnS-CaO complex inclusions in the original steel changed to complex inclusions dominated by Cr-Nb-Mn-S-O and MgO.Al_(2)O_(3),corresponding to the MgO-Cr_(2)O_(3)-based and MgO-MgAl_(2)O_(4)-based refractories,respectively.The MgO.Al_(2)O_(3) layer was formed at the reaction interface between MgO-MgAl_(2)O_(4)-based refractory and molten steel,which is helpful to restrict the erosion of refractories and the pollution of molten steel.The damage mechanism of the MgO-Cr_(2)O_(3)-based refractory is mainly permeation and chemical reaction,while the damage of the MgO-MgAl_(2)O_(4)-based refractory is mainlyscouring erosion.展开更多
Electrochemical nitrogen reduction reaction(NRR)is a sustainable alterna-tive to the Haber-Bosch process for ammonia(NH3)production.However,the significant uphill energy in the multistep NRR pathway is a bottleneck fo...Electrochemical nitrogen reduction reaction(NRR)is a sustainable alterna-tive to the Haber-Bosch process for ammonia(NH3)production.However,the significant uphill energy in the multistep NRR pathway is a bottleneck for favorable serial reactions.To overcome this challenge,we designed a vanadium oxide/nitride(V_(2)O_(3)/VN)hybrid electrocatalyst in which V_(2)O_(3)and VN coex-ist coherently at the heterogeneous interface.Since single-phase V_(2)O_(3)and VN exhibit different surface catalytic kinetics for NRR,the V_(2)O_(3)/VN hybrid elec-trocatalyst can provide alternating reaction pathways,selecting a lower energy pathway for each material in the serial NRR pathway.As a result,the ammo-nia yield of the V_(2)O_(3)/VN hybrid electrocatalyst was 219.6µg h^(-1)cm^(-2),and the Faradaic efficiency was 18.9%,which is much higher than that of single-phase VN,V_(2)O_(3),and VNxOy solid solution catalysts without heterointerfaces.Density functional theory calculations confirmed that the composition of these hybrid electrocatalysts allows NRR to proceed from a multistep reduction reaction to a low-energy reaction pathway through the migration and adsorption of interme-diate species.Therefore,the design of metal oxide/nitride hybrids with coherent heterointerfaces provides a novel strategy for synthesizing highly efficient elec-trochemical catalysts that induce steps favorable for the efficient low-energy progression of NRR.展开更多
Z-scheme photocatalytic system has been regarded as a popular field of research in photoelectrochemical(PEC)water splitting.Among the many obstacles facing a Z-scheme photocatalytic system,the analysis methods of inte...Z-scheme photocatalytic system has been regarded as a popular field of research in photoelectrochemical(PEC)water splitting.Among the many obstacles facing a Z-scheme photocatalytic system,the analysis methods of interfacial Z-scheme charge transfer still remain a significant challenge.Hence,in this study,CdS/Ti-Fe_(2)O_(3)heterojunction photoanodes are elaborately designed to explore the charge-transfer behavior in PEC water splitting.In this study,photophysical measurements,including the Kelvin probe measurement,surface photovoltage spectroscopy(SPV),and transient photovoltage spectroscopy(TPV),are used to monitor the migration behavior of photogenerated charges at the interface electric field of CdS/Ti-Fe_(2)O_(3)Z-scheme heterojunction photoanodes.The Kelvin probe and SPV measurements demonstrate that CdS/Ti-Fe_(2)O_(3)interfacial driving force favors the rapid transfer of photoexcited electrons to CdS.The double-beam strategy based on TPV indicates that more electrons of Ti-Fe_(2)O_(3)are combined with the holes of CdS owing to the intensive interface electric field.The results of these measurements successfully prove the Z-scheme migration mechanism of CdS/Ti-Fe_(2)O_(3)photoanodes.Benefiting from the desirable charge transfer at the interface electric field,CdS/Ti-Fe_(2)O_(3)photoanodes exhibit superior photocatalytic oxygen evolution reaction performance compared with that of pure Ti-Fe_(2)O_(3).The photocurrent density of the 25CdS/Ti-Fe_(2)O_(3)photoanode reaches 1.94 mA/cm^(2) at 1.23 V versus reversible hydrogen electrode without excess cocatalyst,and it is two times higher than that of pure Ti-Fe_(2)O_(3)photoanode.Therefore,an outstanding strategy is provided in this study to prove the Z-scheme charge-transfer mechanism of photocatalytic systems in PEC water splitting.展开更多
文摘Interfaces and surfaces of YBa_2Cu_3O_(7-x)(YBCO)-Ag have been studied by SEM-EDX and AES.No effect of Ag on 123 structure in X-ray diffraction pattern was observed for 0.4 mol Ag doped YBCO.AES analysis indicated that Ag segregated on surface of YBCO and resulted in decrease of YBCO-metal lead resistance.In addition,solution and segregation of Ag as elemental state were often appeared on interfaces and surfaces of high temperature annealed YBCO,whether elemental Ag or compound Ag_2O and AgNO_3 adopted as doping material.
基金Supported by National Natural Science Foundation of China(92064014,11933006)Science and Technology Commission of Shanghai Municipality(18J1414900)Youth Innovation Promotion Association CAS。
基金supported by the Fundamental Strengthening Program Key Basic Research Project(Grant No.2021-173ZD-057).
文摘A NiO/β-Ga_(2)O_(3) heterojunction-gate field effect transistor(HJ-FET)is fabricated and it_(s)instability mechanisms are exper-imentally investigated under different gate stress voltage(V_(G,s))and stress times(t_(s)).Two different degradation mechanisms of the devices under negative bias stress(NBS)are identified.At low V_(G,s)for a short t_(s),NiO bulk traps trapping/de-trapping elec-trons are responsible for decrease/recovery of the leakage current,respectively.At higher V_(G,s)or long t_(s),the device transfer char-acteristic curves and threshold voltage(V_(TH))are almost permanently negatively shifted.This is because the interface dipoles are almost permanently ionized and neutralize the ionized charges in the space charge region(SCR)across the heterojunction inter-face,resulting in a narrowing SCR.This provides an important theoretical guide to study the reliability of NiO/β-Ga_(2)O_(3) hetero-junction devices in power electronic applications.
文摘In the quest for the development of thermally stable,highly active and low-cost catalysts for use in catalyzed diesel particulate filter,nano-composites are new areas of research.Therefore,we reported the easy synthesis of spinel NiCo_(2)O_(4)/perovskite LaCoO_(3) nano-composite,and its individual oxides NiCo_(2)O_(4)and LaCoO_(3) for comparison.The detailed insights into the physio-chemical characteristics of formed NiCo_(2)O_(4)/LaCoO_(3) nano-composite were done based on various characterization analysis such as X-ray diffraction(XRD),Fourier transform infrared(FT-IR),N_(2) physiosorption,scanning electron microscopy-energy dispersive spectroscopy(SEM-EDX),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).The characterization analysis of NiCo_(2)O_(4)/LaCoO_(3) revealed the successful formation of a chemical interface possessing strong interfacial interaction,resulting in desirable physicochemical characteristics such as small crystallite size,abundant mesoporosity,high specific surface area and activation of surface lattice oxygen.Owing to the desirable characteristics,the activity results over NiCo_(2)O_(4)/LaCoO_(3) nano-composite showed the excellent CO oxidation performance and high soot oxidation activity,recyclability and thermal stability.This work mainly attempts to emphasize the effectiveness of the facile,inexpensive and conventionally used precipitation method for the successful formation of highly efficient nano-composites.
基金support from the National Natural Science Foundation of China(Grant Nos.U1860205 and 52204352)Youth Project of Hubei Natural Science Foundation(Grant No.2022CFB593)+1 种基金Key R&D Project of Hubei Province(Grant No.2022BAA021)Guiding Project of Scientific Research Plan of Hubei Provincial Department of Education(Grant No.B2022019).
文摘The interaction of MgO-MgAl_(2)O_(4)-based and MgO-Cr_(2)O_(3)-based refractories with X70 molten steel was studied by immersion experiments at 1560℃.The effects of immersion time(30 and 60 min)on the contents of total oxygen(TO),Al,Nb,Si,Mn,and Cr as well as the composition,number density,and size distribution of inclusions in the molten steel were investigated.The influence of the penetration and erosion degree of the molten steel to the refractory on the steel-refractory interface layer was analyzed.The results show that,at 1560℃,the MgO-MgAl_(2)O_(4)-based refractory can better control the contents of TO and the composition of molten steel compared with the MgO-Cr_(2)O_(3)-based refractory.The TO content is only 16×10^(-4) wt.%in the molten steel after reacted with the Mg0-MgAl_(2)O_(4)-based refractory at the end point of refining,4 accounting for 11.5%of that reacted with the MgO-Cr_(2)O_(3)-based refractory(139×10^(-4) wt.%).The number density of inclusions is only 14 mm^(-2),and the average size ofinclusions is only 1.31μm,with thelargest proportion of inclusions in 1-2μm(70%).The Al_(2)O_(3)-MnS-CaO complex inclusions in the original steel changed to complex inclusions dominated by Cr-Nb-Mn-S-O and MgO.Al_(2)O_(3),corresponding to the MgO-Cr_(2)O_(3)-based and MgO-MgAl_(2)O_(4)-based refractories,respectively.The MgO.Al_(2)O_(3) layer was formed at the reaction interface between MgO-MgAl_(2)O_(4)-based refractory and molten steel,which is helpful to restrict the erosion of refractories and the pollution of molten steel.The damage mechanism of the MgO-Cr_(2)O_(3)-based refractory is mainly permeation and chemical reaction,while the damage of the MgO-MgAl_(2)O_(4)-based refractory is mainlyscouring erosion.
基金National Research Foundation of Korea,Grant/Award Numbers:2022R1A2C1012419,2022R1A2C1011559,2022R1C1C1007004。
文摘Electrochemical nitrogen reduction reaction(NRR)is a sustainable alterna-tive to the Haber-Bosch process for ammonia(NH3)production.However,the significant uphill energy in the multistep NRR pathway is a bottleneck for favorable serial reactions.To overcome this challenge,we designed a vanadium oxide/nitride(V_(2)O_(3)/VN)hybrid electrocatalyst in which V_(2)O_(3)and VN coex-ist coherently at the heterogeneous interface.Since single-phase V_(2)O_(3)and VN exhibit different surface catalytic kinetics for NRR,the V_(2)O_(3)/VN hybrid elec-trocatalyst can provide alternating reaction pathways,selecting a lower energy pathway for each material in the serial NRR pathway.As a result,the ammo-nia yield of the V_(2)O_(3)/VN hybrid electrocatalyst was 219.6µg h^(-1)cm^(-2),and the Faradaic efficiency was 18.9%,which is much higher than that of single-phase VN,V_(2)O_(3),and VNxOy solid solution catalysts without heterointerfaces.Density functional theory calculations confirmed that the composition of these hybrid electrocatalysts allows NRR to proceed from a multistep reduction reaction to a low-energy reaction pathway through the migration and adsorption of interme-diate species.Therefore,the design of metal oxide/nitride hybrids with coherent heterointerfaces provides a novel strategy for synthesizing highly efficient elec-trochemical catalysts that induce steps favorable for the efficient low-energy progression of NRR.
文摘Z-scheme photocatalytic system has been regarded as a popular field of research in photoelectrochemical(PEC)water splitting.Among the many obstacles facing a Z-scheme photocatalytic system,the analysis methods of interfacial Z-scheme charge transfer still remain a significant challenge.Hence,in this study,CdS/Ti-Fe_(2)O_(3)heterojunction photoanodes are elaborately designed to explore the charge-transfer behavior in PEC water splitting.In this study,photophysical measurements,including the Kelvin probe measurement,surface photovoltage spectroscopy(SPV),and transient photovoltage spectroscopy(TPV),are used to monitor the migration behavior of photogenerated charges at the interface electric field of CdS/Ti-Fe_(2)O_(3)Z-scheme heterojunction photoanodes.The Kelvin probe and SPV measurements demonstrate that CdS/Ti-Fe_(2)O_(3)interfacial driving force favors the rapid transfer of photoexcited electrons to CdS.The double-beam strategy based on TPV indicates that more electrons of Ti-Fe_(2)O_(3)are combined with the holes of CdS owing to the intensive interface electric field.The results of these measurements successfully prove the Z-scheme migration mechanism of CdS/Ti-Fe_(2)O_(3)photoanodes.Benefiting from the desirable charge transfer at the interface electric field,CdS/Ti-Fe_(2)O_(3)photoanodes exhibit superior photocatalytic oxygen evolution reaction performance compared with that of pure Ti-Fe_(2)O_(3).The photocurrent density of the 25CdS/Ti-Fe_(2)O_(3)photoanode reaches 1.94 mA/cm^(2) at 1.23 V versus reversible hydrogen electrode without excess cocatalyst,and it is two times higher than that of pure Ti-Fe_(2)O_(3)photoanode.Therefore,an outstanding strategy is provided in this study to prove the Z-scheme charge-transfer mechanism of photocatalytic systems in PEC water splitting.