期刊文献+
共找到3,698篇文章
< 1 2 185 >
每页显示 20 50 100
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature
1
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Effect of Compound Rare Earth on Shape Memory Effect of Fe-Mn-Si-Ni-C Alloys
2
作者 司乃潮 贾志宏 祁隆飙 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第S1期168-172,共5页
Effect of compound rare earth (RE) on shape memory effect (SME) of Fe-Mn-Si-Ni-C shape memory alloy was studied by bent measurement,thermal cycle training, SEM and XRD etc. The results show that metallurgic microstruc... Effect of compound rare earth (RE) on shape memory effect (SME) of Fe-Mn-Si-Ni-C shape memory alloy was studied by bent measurement,thermal cycle training, SEM and XRD etc. The results show that metallurgic microstructure is refined and SME improved evidently with the addition of compound RE. The alloy appears little two-way shape memory effect. The former training and addition of compound RE are two effective ways to restrain martensitic stability. XRD analysis also indicates that ε→γ reversible transition ratio increases by training greatly help to improve SME of the alloy. 展开更多
关键词 fe-mn-si-ni-c shape memory alloy grain refinement shape memory effect thermal cycle training rare earths
下载PDF
Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review 被引量:1
3
作者 Shuaishuai Wei Jinliang Zhang +6 位作者 Lei Zhang Yuanjie Zhang Bo Song Xiaobo Wang Junxiang Fan Qi Liu Yusheng Shi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期1-29,共29页
NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi... NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future. 展开更多
关键词 NiTi shape memory alloys laser powder bed fusion transformation behavior thermomechanical response lattice structures
下载PDF
Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
4
作者 霍绍勇 姚龙超 +4 位作者 谢冠宏 符纯明 邱士嘉 龚小超 邓健 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期320-329,共10页
Topological interface state(TIS)of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification an... Topological interface state(TIS)of elastic wave has attracted significant research interest due to its potential prospects in strengthening acoustic energy and enhancing the signal accuracy of damage identification and quantification.However,previous implementations on the interface modes of surface waves are limited to the non-adjustable frequency band and unalterable mode width.Here,we demonstrate the tunable TIS and topological resonance state(TRS)of Rayleigh wave by using a shape memory alloy(SMA)stubbed semi-infinite one-dimensional(1D)solid phononic crystals(PnCs),which simultaneously possesses the adjustable mode width.The mechanism of tunability stems from the phase transformation of the SMA between the martensite at low temperature and the austenite at high temperature.The tunable TIS of Rayleigh wave is realized by combining two bandgap-opened PnCs with different Zak phases.The TRS with adjustable mode width is achieved in the heterostructures by adding PnCs with Dirac point to the middle of two bandgap-opened PnCs with different Zak phases,which exhibits the extraordinary robustness in contrast to the ordinary Fabry–Perot resonance state.This research provides new possibilities for the highly adjustable Rayleigh wave manipulation and find promising applications such as tunable energy harvesters,wide-mode filters,and high-sensitivity Rayleigh wave detectors. 展开更多
关键词 tunable topological interface state Rayleigh wave alterable mode width topological phononic crystals shape memory alloys
下载PDF
INFLUENCE OF PROCESSING ON SHAPE MEMORY EFFECT OF Fe-Mn-Si-Ni-C-RE SHAPE MEMORY ALLOY
5
作者 N.C. Si, Z.H. Jia and L.B. QiSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第5期385-394,共10页
Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SE... Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SEM etc. It was shown that the grains of alloys addition with compound RE became finer and SME increased evidently. SME of the alloy was weakening gradually as carbon content increased under small strain (3%). But in the condition of large strain (more than 6%), SME of the alloy whose carbon content range from 0.1% to 0.12% showed small decreasing range, especially of alloy with the addition of compound RE. Results were also indicated that SME was improved by increasing quenching temperature (>1000℃). The amount of thermal induced martensite increased and the relative shape recovery ratio could be increased to more than 40% after 3-4 times thermal training. The relative shape recovery ratio decreased evidently depending on rising of pre-strain. Furthermore, because speed of martensite transition was extremely great under higher tempering temperature (more than 450℃, ε → γ transition completed in 10s meanwhile the relative shape recovery ratio of the alloy increased rapidly. 展开更多
关键词 fe-mn-si-ni-c-RE shape memory alloy quenching temperature PRE-STRAIN recovery temperature shape memory effect
下载PDF
Effect of chemical component on shape memory effect of Fe-Mn-Si-Ni-C-RE shape memory alloy
6
作者 SI Naichao, JIA Zhihong, and QI Longbiao 《Rare Metals》 SCIE EI CAS CSCD 2004年第1期87-87,共1页
Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high M... Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high Mn content (25%) appeare better SME, especially in lower strain. SME improves evidently when Si is higher content, especially it’s range from 3% up to 4%. But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloy is weakening gradually as carbon content increases under small strain (3%). But in the condition of large strain (above 6%), SME of the alloy whose carbon content ranges from 0.1 % to 0.12% shows small decreasing range, especially of alloy with the addition of compound RE. 展开更多
关键词 chemical component fe-mn-si-ni-c-RE shape memory alloy shape memory effect STRAIN
下载PDF
Effect of chemical component on shape memory effect of Fe-Mn-Si-Ni-C-RE shape memory alloy
7
作者 NaichaoSi ZhihongJia LongbiaoQi 《Journal of University of Science and Technology Beijing》 CSCD 2004年第1期75-80,共6页
Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-REshape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results ofstudy indicate that the alloys with high Mn ... Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-REshape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results ofstudy indicate that the alloys with high Mn content (25%) appeare better SME, especially in lowerstrain. SME improves evidently when Si is higher content, especially it's range from 3% up to 4%.But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloyis weakening gradually as carbon content increases under small strain (3%). But in the condition oflarge strain (above 6%), SME of the alloy whose carbon content ranges from 0.1 % to 0.12% showssmall decreasing range, especially of alloy with the addition of compound RE. 展开更多
关键词 chemical component fe-mn-si-ni-c-RE shape memory alloy shape memory effect STRAIN
下载PDF
CuZnAl Shape Memory Alloy Refined with Composite Rare Earths La+Ce 被引量:16
8
作者 司乃潮 《Journal of Rare Earths》 SCIE EI CAS CSCD 1999年第4期275-279,共5页
The effects of composite rare earths La+Ce on properties of CuZnAl shape memory alloys were studied bymetallograph examination, tensile and bending tests, electric resistivity measurements, EDS and SEM. The test resul... The effects of composite rare earths La+Ce on properties of CuZnAl shape memory alloys were studied bymetallograph examination, tensile and bending tests, electric resistivity measurements, EDS and SEM. The test resultsshow that the grain size of CuZnAl shape memory alloys could be diminished effectively and the mechanical propertiesimproved obviously by the addition of composite rare earths La+Ce (La: Ce=1: 1). Meanwhile, the excellent shapememory properties remained unchanged. The results of microanalyses indicate that the composite rare earths were segregated at grain boundaries and impeded the grain growth, leading to the improvement of the mechanical properties ofCuZnAl alloys. If the amount of composite rare earths La+Ce was greater than 0. 10%, the shape memorial propertiesbecame poor. 展开更多
关键词 Rare earths CuZnAl alloy shape memory alloy
下载PDF
Microstructures and properties of capacitor discharge welded joint of TiNi shape memory alloy and stainless steel 被引量:9
9
作者 李明高 孙大谦 +2 位作者 邱小明 孙德新 殷世强 《China Welding》 EI CAS 2005年第2期95-100,共6页
Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means... Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means of scanning electron microscope ( SEM). Microstructures of the joint were examined by means of optical microscope and SEM. The results showed that the teusile strength of the inhomogeneous joint ( TiNi-SS joint) was low and the joint was brittle. Because TiNi SMA and SS melted, a brittle as-cast structure and compound were formed in the weld. The tensile strength and the shape memory effect (SME) of TiNi-SS joint were strongly influenced by the changes of composition and structure of the weld. Measures should be taken to prevent defects from forming and extruding excessive molten metal in the weld for improving the properties of TiNi-SS joint. 展开更多
关键词 TiNi shape memory alloy stainless steel capacitor discharge welding mechanical property microstructure
下载PDF
EFFECT OF MICROSTRUCTURE ON THE HARDENING AND SOFTENING BEHAVIORS OF POLYCRYSTALLINE SHAPE MEMORY ALLOYS PART Ⅰ:MICROMECHANICS CONSTITUTIVE MODELING 被引量:5
10
作者 宋固全 孙庆平 黄克智 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期309-324,共16页
The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in th... The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in this paper.The model is established on the following basis:(1)the transformation conditions of the unconstrained single crystal SMA microdomain(to be distinguished from the bulk single crystal),which serve as the local criterion for the derivation of overall transfor- mation yield conditions of the polycrystal;(2)the micro-to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived;(3)the quantitative incorporation of three microstruc- ture factors(i.e.,nucleation,growth and orientation distribution of martensite)into the modeling.These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quan- titatively modeled.It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response,the latter will lead to the localization and propagation of transformation bands in TiNi SMA. 展开更多
关键词 phase transformation MICROSTRUCTURE hardening and softening polycrystalline material shape memory alloys
下载PDF
A Computational Fluid Dynamics (CFD) Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy 被引量:8
11
作者 Yong-Hua Zhang Jian-Hui He +2 位作者 Jie Yang Shi-Wu Zhang Kin Huat Low 《International Journal of Automation and computing》 EI 2006年第4期374-381,共8页
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ... Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength). 展开更多
关键词 Computational Fluid Dynamics (CFD) undulatory mechanical fin unsteady flow unstructured mesh shape memory alloy (SMA)
下载PDF
Transformation behavior and shape memory effect of Ti_(50-x)Ni_(48)Fe_2Nb_x alloys by aging treatment 被引量:5
12
作者 Xu, Qing Liu, Fushun 《Rare Metals》 SCIE EI CAS CSCD 2012年第4期311-317,共7页
关键词 Ti-Ni-Fe-Nb shape memory alloys martensitic transformation aging treatment phase transformation temperature
下载PDF
Effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy 被引量:4
13
作者 LI Yanfeng MI Xujun GAO Baodong TAN Ji 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期522-525,共4页
The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomecha... The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomechanical cycling induces defects such as dislocations, which evidently affect the shape memory behavior and transformation temperatures. The recovery strain decreases with increasing number of thermomechanical cycles, whereas the irreversible plastic strain increases, especially in the initial few cycles. The stored elastic strain energy has an important influence on transformation temperatures, the A5^σ decreases and the M5^σ increases with increasing number of thermomechanical cycles. The recovery strain, irreversible plastic strain, A5^σ , and M5^σ reach a saturation value after several cycles. 展开更多
关键词 shape memory alloy TINI thermomechanical cycling recovery strain transformation temperature
下载PDF
Microstructure and corrosion behavior of NiTi shape memory alloys sintered in the SPS process 被引量:3
14
作者 C.Velmurugan V.Senthilkumar P.S.Kamala 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第10期1311-1321,共11页
NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperat... NiTi shape memory alloys(SMAs) was developed using the spark-plasma sintering(SPS) process with different average particle size(45 μm and 10 μm) under various temperature. The influence of particle size and temperature on the density, microstructure, and corrosion behavior of the NiTi in simulated body fluid was examined. The porosity decreased with increasing sintering temperature and decreasing particle size, which resulted in an increase in density of the alloy. Increasing the sintering temperature led to the formation of Ni-and Ti-rich intermetallic such as Ni3Ti and NiTi2. The formation of these secondary phases influenced the corrosion behavior of NiTi by changing its chemical composition. The planar structure of NiTi was transformed into a dendritic structure at 900℃, which resulted in the formation of uniform oxide and phosphate layers on the entire surface. A high corrosion potential and low corrosion current density were achieved with NiTi prepared with 10 μm particles at 900℃, which exhibited superior corrosion resistance. 展开更多
关键词 shape memory alloyS NITI MICROSTRUCTURE corrosion spark-plasma SINTERING
下载PDF
Force-displacement characteristics of simply supported beam laminated with shape memory alloys 被引量:4
15
作者 Zhi-Qiang Wu Zhen-Hua Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期1065-1070,共6页
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe ... As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys. 展开更多
关键词 shape memory alloy Laminated beam Bilinear hysteretic model Force-displacement characteristics - Energy dissipation
下载PDF
Experimental study of a highway bridge with shape memory alloy restrainers focusing on the mitigation of unseating and pounding 被引量:3
16
作者 Guo, Anxin Zhao, Qingjie Li, Hui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期195-204,共10页
This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechan... This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechanical property tests of the SMA wire used in the restrainers are conducted first to understand the pseudo-elastic characteristics of the material.Then,a series of shaking table tests are carried out on a highway bridge model.The structural responses of the highway bridge model equipped with SMA restrainers,installed in the form of deck-deck and deck-pile connections,are analyzed and compared with the uncontrolled structures.The test results of this study indicate that the SMA restrainers are not only effective in preventing unseating but also in suppressing the seismic-induced pounding of the highway bridge model used in this study. 展开更多
关键词 shape memory alloy RESTRAINER unseating POUNDING highway bridge
下载PDF
Aging-induced two-stage reverse martensitic transformation behavior in Co_(46)Ni_(27)Ga_(27) high-temperature shape memory alloy 被引量:3
17
作者 SU Dashuai LI Yan +1 位作者 XIN Yan YUAN Bifei 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期527-532,共6页
The effect of austenite aging at 823 K on the microstructures and martensitic transformation behavior of Co 46 Ni 27 Ga 27 alloy has been investigated using optical microscopy (OM), transmission electron microscopy ... The effect of austenite aging at 823 K on the microstructures and martensitic transformation behavior of Co 46 Ni 27 Ga 27 alloy has been investigated using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and differential scanning calorimeter (DSC). The microstructure observation results show that the unaged Co 46 Ni 27 Ga 27 alloy is composed of the tetragonal nonmodulated martensite phase and face-centered cubic γ phase. It is found that a new nanosized fcc phase precipitates in the process of austenite aging, leading to the formation of metastable age-affected martensite around the precipitates with composition inhomogeneity. Two-stage reverse martensitic transformation occurs in the samples aged for 2 and 24 h due to the composition difference between the age-affected martensite and the original martensite. For the Co 46 Ni 27 Ga 27 alloy aged for 120 h, no reverse transformation can be detected due to the disappearance of the metastable age-affected martensite and the small latent heat of the original martensite. The martensitic transformation temperatures of the Co 46 Ni 27 Ga 27 alloy decrease with an increase in aging time. 展开更多
关键词 shape memory alloys AGING phase transformations MICROSTRUCTURE
下载PDF
Martensitic Transformation and Magnetic-Field-Induced Strain in Magnetic Shape Memory Alloy NiMnGa Melt-Spun Ribbon 被引量:3
18
作者 Shihai GUO, Yanghuan ZHANG, Jianliang LI, Baiyun QUAN, Yan QI and Xinlin WANG Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期211-214,共4页
A magnetic shape memory alloy with nonstoichiometric Ni50Mn27Ga23 was prepared by using melt-spinning technology. The martensitic transformation and the magnetic-field-induced strain (MFIS) of the polycrystalline melt... A magnetic shape memory alloy with nonstoichiometric Ni50Mn27Ga23 was prepared by using melt-spinning technology. The martensitic transformation and the magnetic-field-induced strain (MFIS) of the polycrystalline melt-spun ribbon were investigated. The experimental results showed that the melt-spun ribbons underwent thermal-elastic martensitic transformation and reverse transformation in cooling and heating process and exhibited typical thermo-elastic shape memory effect. However the start temperature for martensitic transformation decreased from 286 K for as-cast alloy to 254 K for as-quenched ribbon and Curie temperature remains approximately constant. A particular internal stress induced by melt-spinning resulted in the formation of a texture structure in the ribbons, which made the ribbons obtain larger martensitic transformation strain and MFIS. The internal stress was released substantially after annealing, which resulted in a decrease of MFIS of the ribbons. 展开更多
关键词 shape memory alloy FERROMAGNETISM MELT-SPINNING Martensitic transformation Magnetic-field-induced strain
下载PDF
INFLUENCE OF MAGNETIZATION ROTATION ON MARTENSITE REORIENTATION IN MAGNETIC SHAPE MEMORY ALLOY 被引量:4
19
作者 Yuping Zhu Guansuo Dui 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第1期13-19,共7页
A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can... A large field-induced strain of magnetic shape memory alloy is developed by the martensite variant reorientation. It is widely recognized that the martensite reorientation in a magnetic shape memory alloy (MSMA) can develop if the magnetic field is large enough. However, it has been shown in the literature that the magnetization rotation may block variant reorientation via energy minimization approach. In this paper, based on a micromechanicat model associated with the thermodynamic theory, authors show that there are some limits for the martensite reorientation, which is hindered by the magnetization rotation. Some useful conclusions are obtained. 展开更多
关键词 magnetic shape memory alloy micromechanical model THERMODYNAMIC magnetization rotation
下载PDF
Microstructures and mechanical properties of laser-welded TiNi shape memory alloy and stainless steel wires 被引量:4
20
作者 李洪梅 孙大千 +2 位作者 韩耀武 董鹏 刘畅 《China Welding》 EI CAS 2010年第3期1-5,共5页
The Nd : YAG laser welding was used to join the TiNi shape memory alloy and AISI304 stainless steel wires. The microstructural features of the dissimilar material joint were analyzed. The tensile and hardness tests w... The Nd : YAG laser welding was used to join the TiNi shape memory alloy and AISI304 stainless steel wires. The microstructural features of the dissimilar material joint were analyzed. The tensile and hardness tests were carried out to examine the mechanical properties and microhardness distribution of the welded joint. The results show that the joint has the non-homogeneous microstructure and element distribution. The brittle phases such as Fe2 Ti , Fe Ti , Cr2 Ti , Ti3 Ni4, Feo 2 Ni4.s Ti5 and TiN mainly segregate in rich Ti region of fusion zone. The laser-welded joint has the tensile strength of 298 MPa with the elongation of 3.72 % and exhibits the brittle fracture features on the fracture surfaces. The reasons for low joint strength were discussed in this investigation. 展开更多
关键词 laser welding TiNi shape memory alloy stainless steel microstructure mechanical properties
下载PDF
上一页 1 2 185 下一页 到第
使用帮助 返回顶部