The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter...The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter to 2.0 mm, a heterogeneous microstructure with in-situ formed a-Fe dendrite sparsely distributed in the amorphous matrix can be attained. This heterogeneous mierostructure is conceived to be highly responsible for the enhanced global plasticity in this marginal Fe-based BMG.展开更多
Bulk metallic glass (BMG) formation was explored in the Fe-B-Si-Nb alloy system though combined use of the atomic cluster line approach and the minor alloying strategy. The basic ternary compositions in the Fe-B-Si ...Bulk metallic glass (BMG) formation was explored in the Fe-B-Si-Nb alloy system though combined use of the atomic cluster line approach and the minor alloying strategy. The basic ternary compositions in the Fe-B-Si system were determined by the intersection points of two cluster lines, namely, Fe-B cluster to Si and Fe-Si cluster to B. 3at% -4at% Nb was added to the quaternary Fe-B-Si-Nb alloy. The casting experiments revealed that good glass-forming ability (GFA) occurred at the (Fe73.4Si8.2B18.4)96Nb4 composition, and 3-mm diameter BMG samples were made. The glass transition temperature (Tg), crystallization temperature (Tx), and supercooled liquid region (△Tx=Tx-Tg) of this BMG were measured to be 866, 889, and 23 K, respectively. The BMG shows a high Vickers hardness of about Hv 1164, a Young's modulus of 180 GPa, and a good corrosion resistance in the solutions of 1 mol/L HCl and 3wt% NaCl.展开更多
The experimental results concerning the effects of Mo on the glass-forming ability(GFA), thermal stability, and mechanical, anticorrosion, and magnetic properties of an(Fe_(71.2)B_(24)Y_(4.8))_(96)Nb_4 bulk metallic g...The experimental results concerning the effects of Mo on the glass-forming ability(GFA), thermal stability, and mechanical, anticorrosion, and magnetic properties of an(Fe_(71.2)B_(24)Y_(4.8))_(96)Nb_4 bulk metallic glass(BMG) were presented. An industrial Fe–B alloy was used as the raw material, and a series of Fe-based BMGs were synthesized. In BMGs with the Mo contents of approximately 1at%–2at%, the cast alloy reached a critical diameter of 6 mm. The hardness and fracture strength also reached their maximum values in this alloy system. However, the anticorrosion and magnetic properties of the BMGs were not substantially improved by the addition of Mo. The low cost, good GFA, high hardness, and high fracture strength of the Fe-based BMGs developed in this work suggest that they are potential candidates for commercial applications.展开更多
Oxide films formed on the surfaces of Fe-based bulk metallic glasses in the temperature range between 373 K and 573 K were characterized and their effects on the corrosion behaviors were investigated by microstructura...Oxide films formed on the surfaces of Fe-based bulk metallic glasses in the temperature range between 373 K and 573 K were characterized and their effects on the corrosion behaviors were investigated by microstructural and electrochemical analysis. The oxide film formed at 573 K is iron-rich oxide and it exhibits an n-type semiconductor at a higher potential than 0.35 V and a p-type semiconductor at a lower potential than 0.35 V. Capacitance measurements show that the donor density decreases with the increase in oxidation temperature, while the thickness of the space charge layer increases with the oxidation temperature rising. The result of immersion tests shows that the mass loss rate increases with the oxidation temperature rising. Therefore, the correlation between microstructure and corrosion resistance needs to be proposed because the corrosion resistance is deteriorated with the development of the oxide films.展开更多
Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore,it is difficult to investigate the plastic deformation behavior and mechanism in...Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore,it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conven-tional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work,the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was in-vestigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow,the typical plastic deformation feature of BMGs,could not be found in as-cast and partially crystallized samples during nanoinden-tation. In addition,the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.展开更多
The corrosion behavior study was conducted on a novel Fe77 Mo5P9C7.5 B1.5 in-situ metallic glass matrix composite (MGMC). This composite sample was developed by introduction of bcc a-Fe dendrites as reinforcing phas...The corrosion behavior study was conducted on a novel Fe77 Mo5P9C7.5 B1.5 in-situ metallic glass matrix composite (MGMC). This composite sample was developed by introduction of bcc a-Fe dendrites as reinforcing phase. The corrosion behavior of this composite was compared to its monolithic counterpart and other Fe-based alloys such as 304L and 2304L stainless steels. The corrosion resistance of MGMCs in H2SO4 solution shows inferior to that of other Fe-based alloys. Experiments suggest that Fe-BMGs samples possess better corrosion resistance property than that of Fe-MGMCs. The possible underlying reasons can be the inhomogeneity induced by the precipitation of a-Fe dendrites in the MGMCs.展开更多
Fe43MsCra5Mo14C15B6Y2 (M = Mn, Co, Ni, and Cu in at.%) bulk metallic glasses (BMGs) are synthesized using the suction casting technique, and the glass-forming ability (GFA), microstructure, and thermal and magne...Fe43MsCra5Mo14C15B6Y2 (M = Mn, Co, Ni, and Cu in at.%) bulk metallic glasses (BMGs) are synthesized using the suction casting technique, and the glass-forming ability (GFA), microstructure, and thermal and magnetic properties of these glasses are extensively examined using X-ray diffraction, differential scanning calorimeter, and vibrating sample magnetometer techniques. Among the four BMG alloys, Fe43NisCr15Mo14C15B6Y2 exhibits the lowest coercivity and the highest saturation magnetization, Curie temperature, effective magnetic moment, and GFA. By contrast, Fe43MnsCrlsMo14C15B6Y2 presents the poorest magnetic properties, such as the highest coercivity and the lowest saturation magnetization, Curie temperature, and effective magnetic moment. Fe43Cu5Cr15MolaC15B6Y2 demonstrates the lowest thermal stability and GFA. The observed thermal, structural, and magnetic properties of these BMG alloys are discussed in terms of the kinetics of BMG synthesization and the formation of different ferromagnetic, ferrimagnetic, and antiferromagnetic phases.展开更多
A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure a...A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance.展开更多
Intermittent serrated flows of a novel ductile Fe60Ni20P13C7 bulk metallic glass(BMG)at variant strain rates were investigated by statistics analysis.Peak and clutter distribution of slip-avalanche magnitudes are di...Intermittent serrated flows of a novel ductile Fe60Ni20P13C7 bulk metallic glass(BMG)at variant strain rates were investigated by statistics analysis.Peak and clutter distribution of slip-avalanche magnitudes are displayed during stable plastic flows at strain rates of 2×10-4 s-1 and 5×10-5 s-1,respectively,which means that serration behavior depends on the strain rate.However,the remarkable agreement between measured slip-avalanche magnitudes and the scaling behavior,i.e.a universal complementary cumulative distribution function(CCDF)predicted by mean-field theory(MFT)model,indicates that the plasticity of the present Fe-based BMGs can be tuned by imposed strain rates:Smax^6)ε-λ.This tuned plasticity is elucidated with expended free-volume model.Moreover,the scaling behavior of serrated flows for other strain rates can be predicted as well.展开更多
The unique properties of bulk metallic glass(BMG)render it an excellent material for bone-implant applications.BMG samples are difficult to produce directly because of the critical cooling rate of molding.Advancements...The unique properties of bulk metallic glass(BMG)render it an excellent material for bone-implant applications.BMG samples are difficult to produce directly because of the critical cooling rate of molding.Advancements in additive manufacturing technologies,such as selective laser melting(SLM),have enabled the development of BMG.The successful production of materials via SLM relies significantly on the processing parameters;meanwhile,the overall energy density affects the crystallization and,thus,the final properties.Therefore,to further determine the effects of the processing parameters,SLM is performed in this study to print Fe-based BMG with different properties three dimensionally using selected processing parameters but a constant energy density.The printed amorphous Fe-based BMG outperforms the typical 316 L stainless steel(316 L SS)in terms of mechanical properties and corrosion resistance.Moreover,observations from nanoindentation tests indicate that the hardness and elastic modulus of the Fe-based BMG can be customized explicitly by adjusting the SLM processing parameters.Indirect cytotoxicity results show that the Fe-based BMG can enhance the viability of SAOS2 cells,as compared with 316 L SS.These intriguing results show that Fe-based BMG should be investigated further for orthopedic implant applications.展开更多
Amorphous solids exhibit scale-free avalanches,even under small external loading,and thus can work as suitable systems to study critical behavior and universality classes.The abundance of scale-free avalanches in the ...Amorphous solids exhibit scale-free avalanches,even under small external loading,and thus can work as suitable systems to study critical behavior and universality classes.The abundance of scale-free avalanches in the entire elastic tension regime of bulk metallic glass(BMG)samples has been experimentally observed using acoustic emission(AE)measurements.In this work,we compare the statistics of avalanches with those of earthquakes,and find that they both follow the Gutenberg–Richter law in the statistics of energies and Omori’s law of aftershock rates,and share the same characteristics in the distribution of recurrence times.These resemblances encourage us to propose the term“glass-quake”to describe avalanches in elastically loaded BMGs.Furthermore,our work echoes the potential universality of critical behavior in disordered physical systems from atomic to planetary scales,and motivates the use of elastic loaded BMGs as valuable laboratory simulators of seismic dynamics.展开更多
Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change...Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change glass transitiontemperature and onset crystallization temperature,while it enhances liquidus temperature.The addition of Cr improves the GFA ofthe(Fe74Nb6B20)100?xCrx glassy alloys compared to that in Cr-free Fe?Nb?B alloys,in which the supercooled liquid region(ΔTx),Trgandγare found to be50?54K,0.526?0.538,and0.367?0.371,respectively.The(Fe74Nb6B20)100?xCrx glassy alloys exhibit excellentsoft magnetic properties with high saturation magnetization of139?161A·m2/kg and low coercivity of30.24?58.9A/m.PresentFe?Nb?B?Cr glassy alloys exhibiting high GFA as well as excellent magnetic properties and low manufacturing cost make themsuitable for magnetic components for engineering application.展开更多
The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results...The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results indicated that the perfect formations of joints without typical defects such as spatter were achieved with optimized parameters. Except for little nano-particle Fe2B, no other crystalline particle was detected by TEM, revealing that the most microstructure in spot weld remains amorphous. The maximum tensile-shearing force was 45.0 N with the optimized parameters of 1 kA weld current, 30 N electrode force and 0.02 ms weld time. The spot weld failed as pullout failure mode propagating along the interface of nugget zone. The study demonstrates that resistance spot welding is an effective and practical welding process for Fe-based metallic glass.展开更多
An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition w...An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.展开更多
The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-...The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-fuel (HVOF) spraying. The corrosion resistance of Fe-AMMC was investigated by potentiodynamic polarization tests in 1 mol/L HCl, NaCl, H2SO4 and NaOH solutions, respectively. The surface morphologies corroded were observed by SEM. The results indicate that Fe-AMMC exhibits excellent corrosion resistance, higher corrosion resistance than 304L stainless steel in the chloride solutions. The low corrosion current density and passive current density of Fe-AMMC with a wide spontaneous passivation region are about 132.0μA/cm2 and 9.0 mA/cm2 in HCl solution, and about 2.5 μA/cm2 and 2.3 mA/cm2 in NaCl solution. The excellent corrosion resistance demonstrates that Fe-based amorphous metallic matrix powder is a viable engineering material in practical anti-corrosion and anti-wear coating applications.展开更多
The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion pr...The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion properties of the(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were investigated by X-ray diffraction, scanning electron microscopy, compressive tests and corrosion tests. It has been found that the addition of Ti higher than 4%(mole fraction) causes the formation of many crystalline phases in the alloy. The alloys with 1%-3% Ti display an obvious yield stage on their compressive stress-strain curves. An appropriate addition of Ti can improve the strength and ductility of the alloys. All the alloys have high corrosion resistance in 1 mol/L Na OH solution, and are corroded in 1 mol/L HCl solution. However, the appropriate addition of Ti can significantly improve the corrosion resistance of the alloys in HCl solution.展开更多
The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass ...The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.展开更多
The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y...The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y and the fracture strength decreases with Y addition due to the reduction of binding energy induced by Y.The fracture surface is dominated by vein-like patterns in Cu45Zr48Al7 bulk metallic glass,and changes to smooth regions in Cu46Zr42Al7Y5 BMG.TEM observation shows that Cu45Zr48Al7 BMG has a composite microstructure of nanocrystalline phases dispersed in amorphous matrix.However,the Cu46Zr42Al7Y5 BMG shows a fully amorphous structure.展开更多
A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on ...A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on glass forming ability(GFA) and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass(BMG) were investigated.The results show that the addition of an appropriate amount(less than 3%,mole fraction) of Fe enhances GFA,as indicated by the increase in the reduced glass transition temperature Trg(=Tg/Tl) and the parameter γ(=Tx/(Tg+Tl)) with increasing Fe content,and GFA gets deteriorated by further Fe addition(4%).The addition of Fe also effectively improves the compressive plasticity and increases the compressive fracture strength in these Zr-based BMGs.Compressive tests on BMG sample with 3 mm in diameter and 6 mm in length reveal work-hardening and a certain plastic strain in the alloy containing 2% Fe.The BMG composite containing 4% Fe also exhibits a high fracture strength along with significant plasticity.展开更多
The corrosion behaviors of Ti-based and Zr-based amorphous alloys and their corresponding crystallized alloys were studied by electrochemical methods. It is found that the corrosion potentials of Zr-based amorphous al...The corrosion behaviors of Ti-based and Zr-based amorphous alloys and their corresponding crystallized alloys were studied by electrochemical methods. It is found that the corrosion potentials of Zr-based amorphous alloy and its corresponding crystalline counterpart are both lower than those of the Ti-based amorphous alloy in the 1 mol/L H2SO4 solution. In the 3.5% NaCl solution,Zr-based crystallized alloy exhibits the lowest corrosion potential among the experimental samples. No passivation is observed in the corrosion process for the Zr-based crystalline alloy. However, Zr- and Ti-based amorphous alloys both exhibit passivation characteristics. EIS measurements indicate the amorphous alloys exhibit better corrosion resistance than the crystallized one in the NaCl solution. Surface analysis shows that both amorphous alloys in the NaCl solution are eroded by pitting corrosion. In the H2SO4 solution, all the alloys display similar behaviors and their surfaces can mostly keep intact except for some cracks on the corroded surface at local region.展开更多
基金Foundation item: Project (SWU110046) supported by the Startup Foundation for Doctors of Southwest University, ChinaProjects (XDJK2012C017,CDJXS11132228, CDJZR10130012) supported by the Fundamental Research Funds for the Central Universities, China+1 种基金Project (CSTS2006AA4012) supported by the Chongqing Science and Technology Commission, ChinaProject (T201112) supported by Shenzhen Key Laboratory of Special Functional Materials,Shenzhen University,China
文摘The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter to 2.0 mm, a heterogeneous microstructure with in-situ formed a-Fe dendrite sparsely distributed in the amorphous matrix can be attained. This heterogeneous mierostructure is conceived to be highly responsible for the enhanced global plasticity in this marginal Fe-based BMG.
基金supported by the National Natural Science Foundation of China (Nos50901012 and 50631010)the National Basic Research Priorities Program of China (No2007CB613902)
文摘Bulk metallic glass (BMG) formation was explored in the Fe-B-Si-Nb alloy system though combined use of the atomic cluster line approach and the minor alloying strategy. The basic ternary compositions in the Fe-B-Si system were determined by the intersection points of two cluster lines, namely, Fe-B cluster to Si and Fe-Si cluster to B. 3at% -4at% Nb was added to the quaternary Fe-B-Si-Nb alloy. The casting experiments revealed that good glass-forming ability (GFA) occurred at the (Fe73.4Si8.2B18.4)96Nb4 composition, and 3-mm diameter BMG samples were made. The glass transition temperature (Tg), crystallization temperature (Tx), and supercooled liquid region (△Tx=Tx-Tg) of this BMG were measured to be 866, 889, and 23 K, respectively. The BMG shows a high Vickers hardness of about Hv 1164, a Young's modulus of 180 GPa, and a good corrosion resistance in the solutions of 1 mol/L HCl and 3wt% NaCl.
基金financially supported by the National Natural Science Foundation of China (Nos.51322103, 51571079, and 51601050)the National Key Technologies R&D program of China (Nos.2015CB856800 and 2016YFB0300500)the Fundamental Research Funds for the Central Universities of China (Nos.JZ2016HGBZ0772 and JZ2016HGPB0671)
文摘The experimental results concerning the effects of Mo on the glass-forming ability(GFA), thermal stability, and mechanical, anticorrosion, and magnetic properties of an(Fe_(71.2)B_(24)Y_(4.8))_(96)Nb_4 bulk metallic glass(BMG) were presented. An industrial Fe–B alloy was used as the raw material, and a series of Fe-based BMGs were synthesized. In BMGs with the Mo contents of approximately 1at%–2at%, the cast alloy reached a critical diameter of 6 mm. The hardness and fracture strength also reached their maximum values in this alloy system. However, the anticorrosion and magnetic properties of the BMGs were not substantially improved by the addition of Mo. The low cost, good GFA, high hardness, and high fracture strength of the Fe-based BMGs developed in this work suggest that they are potential candidates for commercial applications.
基金supported by the National Natural Science Foundation of China (No.51165038)the Doctoral Startup Fund of Nanchang Hangkong University (No.EA201103238)the Korean Ministry of Commerce, Industry and Energy through the project entitled as "The Development of Structural Metallic Materials and Parts with Super Strength and High Performance"
文摘Oxide films formed on the surfaces of Fe-based bulk metallic glasses in the temperature range between 373 K and 573 K were characterized and their effects on the corrosion behaviors were investigated by microstructural and electrochemical analysis. The oxide film formed at 573 K is iron-rich oxide and it exhibits an n-type semiconductor at a higher potential than 0.35 V and a p-type semiconductor at a lower potential than 0.35 V. Capacitance measurements show that the donor density decreases with the increase in oxidation temperature, while the thickness of the space charge layer increases with the oxidation temperature rising. The result of immersion tests shows that the mass loss rate increases with the oxidation temperature rising. Therefore, the correlation between microstructure and corrosion resistance needs to be proposed because the corrosion resistance is deteriorated with the development of the oxide films.
基金the National Natural Science Foundation of China (Grant Nos. 50571109, 10572142 and 50771102) the National Basic Research Program of China (973 Program)(Grant No. 2007CB613900)
文摘Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore,it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conven-tional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work,the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was in-vestigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow,the typical plastic deformation feature of BMGs,could not be found in as-cast and partially crystallized samples during nanoinden-tation. In addition,the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.
基金Item Sponsored by National Natural Science Foundation of China(51401141)Science Foundation of Shanxi Province of China(2013011010-1)Youth Science Foundation of Shanxi Province of China(2014021017-3)
文摘The corrosion behavior study was conducted on a novel Fe77 Mo5P9C7.5 B1.5 in-situ metallic glass matrix composite (MGMC). This composite sample was developed by introduction of bcc a-Fe dendrites as reinforcing phase. The corrosion behavior of this composite was compared to its monolithic counterpart and other Fe-based alloys such as 304L and 2304L stainless steels. The corrosion resistance of MGMCs in H2SO4 solution shows inferior to that of other Fe-based alloys. Experiments suggest that Fe-BMGs samples possess better corrosion resistance property than that of Fe-MGMCs. The possible underlying reasons can be the inhomogeneity induced by the precipitation of a-Fe dendrites in the MGMCs.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51274151 and 51371127)Shanghai Natural Science Foundation (Grant No. 13ZR1462400)
文摘Fe43MsCra5Mo14C15B6Y2 (M = Mn, Co, Ni, and Cu in at.%) bulk metallic glasses (BMGs) are synthesized using the suction casting technique, and the glass-forming ability (GFA), microstructure, and thermal and magnetic properties of these glasses are extensively examined using X-ray diffraction, differential scanning calorimeter, and vibrating sample magnetometer techniques. Among the four BMG alloys, Fe43NisCr15Mo14C15B6Y2 exhibits the lowest coercivity and the highest saturation magnetization, Curie temperature, effective magnetic moment, and GFA. By contrast, Fe43MnsCrlsMo14C15B6Y2 presents the poorest magnetic properties, such as the highest coercivity and the lowest saturation magnetization, Curie temperature, and effective magnetic moment. Fe43Cu5Cr15MolaC15B6Y2 demonstrates the lowest thermal stability and GFA. The observed thermal, structural, and magnetic properties of these BMG alloys are discussed in terms of the kinetics of BMG synthesization and the formation of different ferromagnetic, ferrimagnetic, and antiferromagnetic phases.
基金Project(51301205)supported by the National Natural Science Foundation of ChinaProject(20130162120001)supported by the Doctoral Program of Higher Education of China+2 种基金Project(K1502003-11)supported by the Changsha Municipal Major Science and Technology Program,ChinaProject(K1406012-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProject(2016CX003)supported by the Innovation-driven Plan in Central South University,China
文摘A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance.
基金the financial support of National Natural Science Foundation of China(No.51371122)the financial support of National Natural Science Foundation of China(No.51501220)+1 种基金the Youth Natural Science Foundation of Shanxi Province,China(No.2015021005)the Natural Science Foundation of Jiangsu Province(BK20150170)
文摘Intermittent serrated flows of a novel ductile Fe60Ni20P13C7 bulk metallic glass(BMG)at variant strain rates were investigated by statistics analysis.Peak and clutter distribution of slip-avalanche magnitudes are displayed during stable plastic flows at strain rates of 2×10-4 s-1 and 5×10-5 s-1,respectively,which means that serration behavior depends on the strain rate.However,the remarkable agreement between measured slip-avalanche magnitudes and the scaling behavior,i.e.a universal complementary cumulative distribution function(CCDF)predicted by mean-field theory(MFT)model,indicates that the plasticity of the present Fe-based BMGs can be tuned by imposed strain rates:Smax^6)ε-λ.This tuned plasticity is elucidated with expended free-volume model.Moreover,the scaling behavior of serrated flows for other strain rates can be predicted as well.
基金National Natural Science Foundation of China(Grant Nos.51875379,52105342)China Scholarship Council via a research collaboration with National University of Singapore Additive Manufacturing Centre.
文摘The unique properties of bulk metallic glass(BMG)render it an excellent material for bone-implant applications.BMG samples are difficult to produce directly because of the critical cooling rate of molding.Advancements in additive manufacturing technologies,such as selective laser melting(SLM),have enabled the development of BMG.The successful production of materials via SLM relies significantly on the processing parameters;meanwhile,the overall energy density affects the crystallization and,thus,the final properties.Therefore,to further determine the effects of the processing parameters,SLM is performed in this study to print Fe-based BMG with different properties three dimensionally using selected processing parameters but a constant energy density.The printed amorphous Fe-based BMG outperforms the typical 316 L stainless steel(316 L SS)in terms of mechanical properties and corrosion resistance.Moreover,observations from nanoindentation tests indicate that the hardness and elastic modulus of the Fe-based BMG can be customized explicitly by adjusting the SLM processing parameters.Indirect cytotoxicity results show that the Fe-based BMG can enhance the viability of SAOS2 cells,as compared with 316 L SS.These intriguing results show that Fe-based BMG should be investigated further for orthopedic implant applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51801122 and 52071210)the Science Challenge Project(Grant No.TZ2018001)the Science and Technology Commission of Shanghai(Grant No.21ZR1430800).
文摘Amorphous solids exhibit scale-free avalanches,even under small external loading,and thus can work as suitable systems to study critical behavior and universality classes.The abundance of scale-free avalanches in the entire elastic tension regime of bulk metallic glass(BMG)samples has been experimentally observed using acoustic emission(AE)measurements.In this work,we compare the statistics of avalanches with those of earthquakes,and find that they both follow the Gutenberg–Richter law in the statistics of energies and Omori’s law of aftershock rates,and share the same characteristics in the distribution of recurrence times.These resemblances encourage us to propose the term“glass-quake”to describe avalanches in elastically loaded BMGs.Furthermore,our work echoes the potential universality of critical behavior in disordered physical systems from atomic to planetary scales,and motivates the use of elastic loaded BMGs as valuable laboratory simulators of seismic dynamics.
基金Projects(51301125,51171136,51502234,51401156,11404251)supported by the National Natural Science Foundation of ChinaProject(2013JK0907)supported by Scientific Research Program Funded by Shaanxi Provincial Education Department,China
文摘Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change glass transitiontemperature and onset crystallization temperature,while it enhances liquidus temperature.The addition of Cr improves the GFA ofthe(Fe74Nb6B20)100?xCrx glassy alloys compared to that in Cr-free Fe?Nb?B alloys,in which the supercooled liquid region(ΔTx),Trgandγare found to be50?54K,0.526?0.538,and0.367?0.371,respectively.The(Fe74Nb6B20)100?xCrx glassy alloys exhibit excellentsoft magnetic properties with high saturation magnetization of139?161A·m2/kg and low coercivity of30.24?58.9A/m.PresentFe?Nb?B?Cr glassy alloys exhibiting high GFA as well as excellent magnetic properties and low manufacturing cost make themsuitable for magnetic components for engineering application.
基金the National Natural Science Foundation of China(No.51461031)the State Key Lab of Advanced Metals and Materials(No.2013-Z05)+2 种基金the Department of Education Fund of jiangxi(GJJ150733)the Beijing Natural Science Foundation(No.214200)the Program for Excellent Talents in Beijing Municipality
文摘The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results indicated that the perfect formations of joints without typical defects such as spatter were achieved with optimized parameters. Except for little nano-particle Fe2B, no other crystalline particle was detected by TEM, revealing that the most microstructure in spot weld remains amorphous. The maximum tensile-shearing force was 45.0 N with the optimized parameters of 1 kA weld current, 30 N electrode force and 0.02 ms weld time. The spot weld failed as pullout failure mode propagating along the interface of nugget zone. The study demonstrates that resistance spot welding is an effective and practical welding process for Fe-based metallic glass.
基金Project(2012M511401)supported by China Postdoctoral Science FoundationProject(12JJ5018)supported by Hunan Provincial Natural Science Foundation of China+1 种基金Project(2012RS4006)supported by Hunan Provincial Science and Technology Plan of ChinaProject(CSUZC2012028)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.
基金Project(EA201103238)supported by Nanchang Hangkong University Doctor Startup Fund,China
文摘The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-fuel (HVOF) spraying. The corrosion resistance of Fe-AMMC was investigated by potentiodynamic polarization tests in 1 mol/L HCl, NaCl, H2SO4 and NaOH solutions, respectively. The surface morphologies corroded were observed by SEM. The results indicate that Fe-AMMC exhibits excellent corrosion resistance, higher corrosion resistance than 304L stainless steel in the chloride solutions. The low corrosion current density and passive current density of Fe-AMMC with a wide spontaneous passivation region are about 132.0μA/cm2 and 9.0 mA/cm2 in HCl solution, and about 2.5 μA/cm2 and 2.3 mA/cm2 in NaCl solution. The excellent corrosion resistance demonstrates that Fe-based amorphous metallic matrix powder is a viable engineering material in practical anti-corrosion and anti-wear coating applications.
基金Projects(51171041,51104047) supported by the National Natural Science Foundation of ChinaProject(N100409001) supported by the Fundamental Research Funds for the Central Universities,China
文摘The(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were prepared using an in-situ suck-casting method in a copper mold. The effects of Ti addition on the microstructure, mechanical and corrosion properties of the(Zr_(0.55)Al_(0.1)Ni_(0.05)Cu_(0.3))_(100-x)Ti_x alloys were investigated by X-ray diffraction, scanning electron microscopy, compressive tests and corrosion tests. It has been found that the addition of Ti higher than 4%(mole fraction) causes the formation of many crystalline phases in the alloy. The alloys with 1%-3% Ti display an obvious yield stage on their compressive stress-strain curves. An appropriate addition of Ti can improve the strength and ductility of the alloys. All the alloys have high corrosion resistance in 1 mol/L Na OH solution, and are corroded in 1 mol/L HCl solution. However, the appropriate addition of Ti can significantly improve the corrosion resistance of the alloys in HCl solution.
基金Project(50971041)support by the National Natural Science Foundation of China
文摘The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.
基金Project (2010ZDJH10) supported by the NUST Research FundingProject (BK2007213) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y and the fracture strength decreases with Y addition due to the reduction of binding energy induced by Y.The fracture surface is dominated by vein-like patterns in Cu45Zr48Al7 bulk metallic glass,and changes to smooth regions in Cu46Zr42Al7Y5 BMG.TEM observation shows that Cu45Zr48Al7 BMG has a composite microstructure of nanocrystalline phases dispersed in amorphous matrix.However,the Cu46Zr42Al7Y5 BMG shows a fully amorphous structure.
基金Project(50371016) supported by the National Natural Science Foundation of ChinaProject(50611130629) supported by the International Cooperation and Exchange of the National Natural Science Foundation of China
文摘A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on glass forming ability(GFA) and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass(BMG) were investigated.The results show that the addition of an appropriate amount(less than 3%,mole fraction) of Fe enhances GFA,as indicated by the increase in the reduced glass transition temperature Trg(=Tg/Tl) and the parameter γ(=Tx/(Tg+Tl)) with increasing Fe content,and GFA gets deteriorated by further Fe addition(4%).The addition of Fe also effectively improves the compressive plasticity and increases the compressive fracture strength in these Zr-based BMGs.Compressive tests on BMG sample with 3 mm in diameter and 6 mm in length reveal work-hardening and a certain plastic strain in the alloy containing 2% Fe.The BMG composite containing 4% Fe also exhibits a high fracture strength along with significant plasticity.
基金Project (2007CB607603) supported by the National Basic Research Program of ChinaProject (B08040) supported by the "111" Project, China
文摘The corrosion behaviors of Ti-based and Zr-based amorphous alloys and their corresponding crystallized alloys were studied by electrochemical methods. It is found that the corrosion potentials of Zr-based amorphous alloy and its corresponding crystalline counterpart are both lower than those of the Ti-based amorphous alloy in the 1 mol/L H2SO4 solution. In the 3.5% NaCl solution,Zr-based crystallized alloy exhibits the lowest corrosion potential among the experimental samples. No passivation is observed in the corrosion process for the Zr-based crystalline alloy. However, Zr- and Ti-based amorphous alloys both exhibit passivation characteristics. EIS measurements indicate the amorphous alloys exhibit better corrosion resistance than the crystallized one in the NaCl solution. Surface analysis shows that both amorphous alloys in the NaCl solution are eroded by pitting corrosion. In the H2SO4 solution, all the alloys display similar behaviors and their surfaces can mostly keep intact except for some cracks on the corroded surface at local region.