[Objectives]This study was conducted to enrich grape varieties.[Methods]The growth and fruit quality of grape with different rootstock and scion combinations were compared and analyzed taking CR2,CR3 and CR9 as rootst...[Objectives]This study was conducted to enrich grape varieties.[Methods]The growth and fruit quality of grape with different rootstock and scion combinations were compared and analyzed taking CR2,CR3 and CR9 as rootstocks and‘Huangjinmi’as grafted seedlings and own-rooted seedlings as control.[Results]The comprehensive scores of‘Huangjinmi’grape with different rootstock and scion combinations showed an order of HJM/CR9,HJM/CR2 and HJM/CR3 from high to low.The three rootstock and scion combinations obviously promoted the growth and adaptability of grape trees,increased fruit size and improved fruit quality.Through the quality analysis of untreated and treated fruits,HJM/CR9 was superior to ZGM.Different fruit management measures can be adopted for‘Huangjinmi’grape to produce fruit with different quality according to market demand.[Conclusions]This study has a guiding significance for screening grape varieties suitable for adverse environments such as high soil viscosity,high temperature and high humidity.展开更多
Adventitious root formation is a bottleneck during vegetative proliferation.Potassium(K^(+))is an essential macronutrient for plants.K^(+)accumulation from the soil and its distribution to the different plant organs i...Adventitious root formation is a bottleneck during vegetative proliferation.Potassium(K^(+))is an essential macronutrient for plants.K^(+)accumulation from the soil and its distribution to the different plant organs is mediated by K^(+)transporters named K^(+)transporter(KT),K^(+)uptake(KUP),or high-affinity K^(+)(HAK).This study aimed to identify members of the HAK gene family in apples and to characterize the effects of K^(+)supply on adventitious root formation and on the expression of HAK genes and the genes that putatively control auxin transport,signaling,and cell fate during adventitious root formation.In this study,34 HAK genes(MdHAKs)were identified in the apple(Malus×domestica‘Golden Delicious’)genome.A phylogenetic analysis divided MdHAKs into four clusters(Ⅰ,Ⅱ,Ⅲ,andⅣ),comprising 16,1,4,and 13 genes,respectively.The syntenic relationships revealed that 62.5%of the total MdHAK genes arise from genomic duplication events.Chromosome location,domain structure,motif analysis,and physico-chemical characteristics were subsequently investigated.Furthermore,the application of K^(+)indicated the emergence of adventitious roots at 8 d and produced more adventitious roots at 16 d than the K^(+)-free control(CK)treatment.In addition,various MdHAKs showed root-specific expression in B9 apple rootstock stem cuttings and enhanced expression during the initiation and emergence stages of adventitious root formation in response to K^(+)treatment.Additionally,K^(+)treatment enhanced the expression levels of MdPIN1,MdPIN2,and MdAUX1.Further data indicated that a higher expression of MdWOX11,MdLBD16,and MdLBD29 and of cell cycle-related genes contributed to the auxin-stimulated adventitious root formation in response to K^(+).展开更多
[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the mate...[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the material,the vegetative growth,yield and fruit quality of 8 different rootstock-scion combinations were compared.[Results]‘Tianhong 2’/SH6 as self-rooted rootstock had large average single fruit weight(256.33 g),large number of fruits per plant(188.68),the highest yield[(3250.08±23.42)kg/667 m ^(2)]and the highest colored area(93.5%),and the soluble solid content reached the requirement of high quality fruit(15.78%).[Conclusions]In central and southern Hebei Province,‘Tianhong 2’grafted on SH6 self-rooted rootstock has moderate growth,high yield and good fruit quality,so it can be considered as the preferred rootstock-scion combination in the local area.展开更多
[Objectives]The paper was to screen and identify the control effect of resistant rootstock on jujube witches broom disease.[Methods]The seeds or branches of disease-free plants were collected from wild jujube bushes i...[Objectives]The paper was to screen and identify the control effect of resistant rootstock on jujube witches broom disease.[Methods]The seeds or branches of disease-free plants were collected from wild jujube bushes infected by witches broom disease,and 5434 seedlings were obtained by sowing or cutting.The virus was inoculated by grafting diseased bark.After 6 years of preliminary screening,40 plants with resistance to jujube witches broom disease were obtained.Taking these resistant plants as the rootstocks,the susceptible variety‘long red jujube’was grafted at a height of 40 cm.When the plants grew to appropriate thickness,diseased bark was grafted to‘long red jujube’and rootstock to transmit the virus.After 18 years of observation and judgment,4 rootstock strains with high resistance or immunity to jujube witches broom disease were finally determined,namely 90801,90803,90806 and 908011.The susceptible variety‘long red jujube’was grafted to 4 rootstocks and inoculated the virus through diseased bark grafting method.[Results]The resistant rootstock had obvious disease resistance effect.When the branches of 90801 and 90803 rootstocks were grafted to the trunk of diseased trees,the symptoms of jujube witches broom disease gradually alleviated till disappeared.[Conclusions]Using germplasm with high resistance or immunity to jujube witches broom disease as rootstock can effectively prevent the spread of jujube witches broom disease,and bridging the trunk of diseased trees with branches from resistant rootstock has certain therapeutic effect.展开更多
[目的]气候变化新形势下,进一步筛选适宜西北地区抗寒、抗抽干葡萄砧木品种,可为葡萄免埋土栽培推广提供理论依据和技术支撑。[方法]本文以41Bmgt、Riparia、420Bmgt、101-14、196-17、44-53ma、110R、Rupestris du Lot、SO4、161-490、...[目的]气候变化新形势下,进一步筛选适宜西北地区抗寒、抗抽干葡萄砧木品种,可为葡萄免埋土栽培推广提供理论依据和技术支撑。[方法]本文以41Bmgt、Riparia、420Bmgt、101-14、196-17、44-53ma、110R、Rupestris du Lot、SO4、161-490、1103P、5BB、3309、Leon Millt共14种13年生葡萄砧木为试材,通过测定离体一年生枝条累计失水速率,结合田间调查葡萄砧木存活率和离体一年生枝条抽干率,以此来评价不同葡萄砧木品种抗抽干能力;结合前人研究及砧木品种特性,采用高低温交变试验箱模拟低温的方法,设置4(对照)、-15、-20、-25和-30℃一系列温度梯度水平,测定不同葡萄砧木一年生枝条相对电导率、丙二醛、游离脯氨酸、可溶性糖及可溶性蛋白5个生理生化指标,利用隶属函数法进行综合评价不同葡萄砧木的抗寒性。[结果]不同葡萄砧木的抗抽干能力由强到弱依次为:3309>161-490>196-17>Leon Millt>420Bmgt>44-53ma>Riparia>110R>1103P>SO4>101-14>41Bmgt>5BB>Rupestris du Lot;随着处理温度的降低,不同葡萄砧木枝条的抗寒指标总体呈现上升趋势,但不同品种之间存在差异。根据隶属函数的综合分析,结果显示各葡萄砧木的抗寒性由强到弱依次为:SO4>196-17>Leon Millt>5BB>Riparia>44-53ma>420Bmgt>1103P>3309>110R>Rupestris du Lot>101-14>41Bmgt>161-490。[结论]Riparia、196-17、44-53ma和Leon Millt具有较强的抗抽干能力和抗寒性,可作为我国西北地区免埋土葡萄砧木使用。展开更多
基金Supported by National Modern Agriculture Industry Technology System Construction Project(CARS-29-14)Chuzhou Science and Technology Planning Project(2022ZN004)+1 种基金Anhui Provincial Science and Technology Mission Project(2023tpt027)Special Project of Chief Expert Studio of Agricultural Industry in Hefei City,Anhui Province(2023).
文摘[Objectives]This study was conducted to enrich grape varieties.[Methods]The growth and fruit quality of grape with different rootstock and scion combinations were compared and analyzed taking CR2,CR3 and CR9 as rootstocks and‘Huangjinmi’as grafted seedlings and own-rooted seedlings as control.[Results]The comprehensive scores of‘Huangjinmi’grape with different rootstock and scion combinations showed an order of HJM/CR9,HJM/CR2 and HJM/CR3 from high to low.The three rootstock and scion combinations obviously promoted the growth and adaptability of grape trees,increased fruit size and improved fruit quality.Through the quality analysis of untreated and treated fruits,HJM/CR9 was superior to ZGM.Different fruit management measures can be adopted for‘Huangjinmi’grape to produce fruit with different quality according to market demand.[Conclusions]This study has a guiding significance for screening grape varieties suitable for adverse environments such as high soil viscosity,high temperature and high humidity.
基金financially supported by the National Key Research and Development Program of China(Grant No.2018YFD1000101,2019YFD1000803)Shaanxi Apple Industry Science and Technology Project(Grant No.2020zdzx03-01-04)+1 种基金Tang Scholar by Cyrus Tang Foundation(Grant No.C200022002)The China Apple Research System(Grant No.CARS-27).
文摘Adventitious root formation is a bottleneck during vegetative proliferation.Potassium(K^(+))is an essential macronutrient for plants.K^(+)accumulation from the soil and its distribution to the different plant organs is mediated by K^(+)transporters named K^(+)transporter(KT),K^(+)uptake(KUP),or high-affinity K^(+)(HAK).This study aimed to identify members of the HAK gene family in apples and to characterize the effects of K^(+)supply on adventitious root formation and on the expression of HAK genes and the genes that putatively control auxin transport,signaling,and cell fate during adventitious root formation.In this study,34 HAK genes(MdHAKs)were identified in the apple(Malus×domestica‘Golden Delicious’)genome.A phylogenetic analysis divided MdHAKs into four clusters(Ⅰ,Ⅱ,Ⅲ,andⅣ),comprising 16,1,4,and 13 genes,respectively.The syntenic relationships revealed that 62.5%of the total MdHAK genes arise from genomic duplication events.Chromosome location,domain structure,motif analysis,and physico-chemical characteristics were subsequently investigated.Furthermore,the application of K^(+)indicated the emergence of adventitious roots at 8 d and produced more adventitious roots at 16 d than the K^(+)-free control(CK)treatment.In addition,various MdHAKs showed root-specific expression in B9 apple rootstock stem cuttings and enhanced expression during the initiation and emergence stages of adventitious root formation in response to K^(+)treatment.Additionally,K^(+)treatment enhanced the expression levels of MdPIN1,MdPIN2,and MdAUX1.Further data indicated that a higher expression of MdWOX11,MdLBD16,and MdLBD29 and of cell cycle-related genes contributed to the auxin-stimulated adventitious root formation in response to K^(+).
基金Key Research and Development Program of Hebei Province(19226817D)China Apple Research System(CARS-27)+1 种基金Key Technology R&D Program of Hebei Province(16226312D-2)Basic Research Fund Youth Project of Hebei Academy of Agriculture and Forestry Sciences(2021100102).
文摘[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the material,the vegetative growth,yield and fruit quality of 8 different rootstock-scion combinations were compared.[Results]‘Tianhong 2’/SH6 as self-rooted rootstock had large average single fruit weight(256.33 g),large number of fruits per plant(188.68),the highest yield[(3250.08±23.42)kg/667 m ^(2)]and the highest colored area(93.5%),and the soluble solid content reached the requirement of high quality fruit(15.78%).[Conclusions]In central and southern Hebei Province,‘Tianhong 2’grafted on SH6 self-rooted rootstock has moderate growth,high yield and good fruit quality,so it can be considered as the preferred rootstock-scion combination in the local area.
基金Jujube Binzhou Comprehensive Test Station of China Agricultural Industry Research System(CARS30-ZZ-23).
文摘[Objectives]The paper was to screen and identify the control effect of resistant rootstock on jujube witches broom disease.[Methods]The seeds or branches of disease-free plants were collected from wild jujube bushes infected by witches broom disease,and 5434 seedlings were obtained by sowing or cutting.The virus was inoculated by grafting diseased bark.After 6 years of preliminary screening,40 plants with resistance to jujube witches broom disease were obtained.Taking these resistant plants as the rootstocks,the susceptible variety‘long red jujube’was grafted at a height of 40 cm.When the plants grew to appropriate thickness,diseased bark was grafted to‘long red jujube’and rootstock to transmit the virus.After 18 years of observation and judgment,4 rootstock strains with high resistance or immunity to jujube witches broom disease were finally determined,namely 90801,90803,90806 and 908011.The susceptible variety‘long red jujube’was grafted to 4 rootstocks and inoculated the virus through diseased bark grafting method.[Results]The resistant rootstock had obvious disease resistance effect.When the branches of 90801 and 90803 rootstocks were grafted to the trunk of diseased trees,the symptoms of jujube witches broom disease gradually alleviated till disappeared.[Conclusions]Using germplasm with high resistance or immunity to jujube witches broom disease as rootstock can effectively prevent the spread of jujube witches broom disease,and bridging the trunk of diseased trees with branches from resistant rootstock has certain therapeutic effect.
文摘[目的]气候变化新形势下,进一步筛选适宜西北地区抗寒、抗抽干葡萄砧木品种,可为葡萄免埋土栽培推广提供理论依据和技术支撑。[方法]本文以41Bmgt、Riparia、420Bmgt、101-14、196-17、44-53ma、110R、Rupestris du Lot、SO4、161-490、1103P、5BB、3309、Leon Millt共14种13年生葡萄砧木为试材,通过测定离体一年生枝条累计失水速率,结合田间调查葡萄砧木存活率和离体一年生枝条抽干率,以此来评价不同葡萄砧木品种抗抽干能力;结合前人研究及砧木品种特性,采用高低温交变试验箱模拟低温的方法,设置4(对照)、-15、-20、-25和-30℃一系列温度梯度水平,测定不同葡萄砧木一年生枝条相对电导率、丙二醛、游离脯氨酸、可溶性糖及可溶性蛋白5个生理生化指标,利用隶属函数法进行综合评价不同葡萄砧木的抗寒性。[结果]不同葡萄砧木的抗抽干能力由强到弱依次为:3309>161-490>196-17>Leon Millt>420Bmgt>44-53ma>Riparia>110R>1103P>SO4>101-14>41Bmgt>5BB>Rupestris du Lot;随着处理温度的降低,不同葡萄砧木枝条的抗寒指标总体呈现上升趋势,但不同品种之间存在差异。根据隶属函数的综合分析,结果显示各葡萄砧木的抗寒性由强到弱依次为:SO4>196-17>Leon Millt>5BB>Riparia>44-53ma>420Bmgt>1103P>3309>110R>Rupestris du Lot>101-14>41Bmgt>161-490。[结论]Riparia、196-17、44-53ma和Leon Millt具有较强的抗抽干能力和抗寒性,可作为我国西北地区免埋土葡萄砧木使用。