Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fent...Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fenton reagent.Then,the physical and chemical properties of the catalysts were analyzed by means of XRD,ICP-AES and SEM,especially the effect of Fe3O4 dispersity on γ-Al2O3.The results showed that the activity of the supported catalysts prepared with ultrasonic treatment for dimethoate was higher than those without ultrasonic treatment and the corresponding degradation rate doubled those of the catalyst obtained by impregnation.The probable cause was that for catalysts prepared with ultrasonic treatment,Fe3O4 was well dispersed on the catalyst surface with small particle size,or existed in non-crystalline amorphous state,and Fe content on the catalyst surface was higher than those without ultrasonic treatment.展开更多
基金The project was supported by the National Natural Science Foundation of China(21163016,21174114)Gansu Provincial Natural Science Foundation,China(1010RJZA024)Scientific Research Fund of Northwest Normal University,China(NWNU-KJCXGC-03-63)~~
文摘Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fenton reagent.Then,the physical and chemical properties of the catalysts were analyzed by means of XRD,ICP-AES and SEM,especially the effect of Fe3O4 dispersity on γ-Al2O3.The results showed that the activity of the supported catalysts prepared with ultrasonic treatment for dimethoate was higher than those without ultrasonic treatment and the corresponding degradation rate doubled those of the catalyst obtained by impregnation.The probable cause was that for catalysts prepared with ultrasonic treatment,Fe3O4 was well dispersed on the catalyst surface with small particle size,or existed in non-crystalline amorphous state,and Fe content on the catalyst surface was higher than those without ultrasonic treatment.