为去除废水中的焦糖色素,采用H2O2/Fe2+和H2O2/Fe2+/UV对焦糖色素去除进行研究.实验考察了H2O2和Fe2+投加量、pH值、反应时间对焦糖色素去除率的影响,在此基础上进一步考察了H2O2/Fe2+/UV对焦糖色素去除效果.结果表明,对于芬顿试剂,H2O2...为去除废水中的焦糖色素,采用H2O2/Fe2+和H2O2/Fe2+/UV对焦糖色素去除进行研究.实验考察了H2O2和Fe2+投加量、pH值、反应时间对焦糖色素去除率的影响,在此基础上进一步考察了H2O2/Fe2+/UV对焦糖色素去除效果.结果表明,对于芬顿试剂,H2O2与Fe2+反应的化学计量数为8;pH值为3,反应时间30 m in时,焦糖色的去除效果较好,去除率达到83%.采用H2O2/Fe2+/UV可进一步提高焦糖色的去除效果,去除率可提高到90%.因此采用H2O2/Fe2+或H2O2/Fe2+/UV法获得良好的焦糖色去除效果.展开更多
The use of hybrid advanced oxidation processes(AOPs) for the removal of pollutants from industrial effluents has been extensively studied in recent literature. The aim of this study is to compare the performance of th...The use of hybrid advanced oxidation processes(AOPs) for the removal of pollutants from industrial effluents has been extensively studied in recent literature. The aim of this study is to compare the performance of the photo,Fenton, photo-Fenton and ozone–photo–Fenton processes in terms of color removal and chemical oxygen demand(COD) removal of distillery industrial effluent together with the associated electrical energy per order. It was observed from the experimental results that the O_3/UV/Fe^(2 +)/H_2O_2 process yielded a 100% color and95.50% COD removals with electrical energy per order of 0.015 k W·h·m^(-3) compared to all other combinations of the AOPs. The effects of various operating parameters such as H_2O_2 and Fe^(2+) concentration, effluent pH, COD concentration and UV power on the removal of color, COD and electrical energy per order for the ozone–photo–Fenton process was critically studied and reported. The color and COD removals were analyzed using a UV/Vis spectrometer and closed reflux method.展开更多
文摘为去除废水中的焦糖色素,采用H2O2/Fe2+和H2O2/Fe2+/UV对焦糖色素去除进行研究.实验考察了H2O2和Fe2+投加量、pH值、反应时间对焦糖色素去除率的影响,在此基础上进一步考察了H2O2/Fe2+/UV对焦糖色素去除效果.结果表明,对于芬顿试剂,H2O2与Fe2+反应的化学计量数为8;pH值为3,反应时间30 m in时,焦糖色的去除效果较好,去除率达到83%.采用H2O2/Fe2+/UV可进一步提高焦糖色的去除效果,去除率可提高到90%.因此采用H2O2/Fe2+或H2O2/Fe2+/UV法获得良好的焦糖色去除效果.
基金Supported by the University of Malaya High Impact Research Grant(HIR-MOHED000037-16001)from the Ministry of Higher Education Malaysia
文摘The use of hybrid advanced oxidation processes(AOPs) for the removal of pollutants from industrial effluents has been extensively studied in recent literature. The aim of this study is to compare the performance of the photo,Fenton, photo-Fenton and ozone–photo–Fenton processes in terms of color removal and chemical oxygen demand(COD) removal of distillery industrial effluent together with the associated electrical energy per order. It was observed from the experimental results that the O_3/UV/Fe^(2 +)/H_2O_2 process yielded a 100% color and95.50% COD removals with electrical energy per order of 0.015 k W·h·m^(-3) compared to all other combinations of the AOPs. The effects of various operating parameters such as H_2O_2 and Fe^(2+) concentration, effluent pH, COD concentration and UV power on the removal of color, COD and electrical energy per order for the ozone–photo–Fenton process was critically studied and reported. The color and COD removals were analyzed using a UV/Vis spectrometer and closed reflux method.