Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas...Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.展开更多
Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fent...Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fenton reagent.Then,the physical and chemical properties of the catalysts were analyzed by means of XRD,ICP-AES and SEM,especially the effect of Fe3O4 dispersity on γ-Al2O3.The results showed that the activity of the supported catalysts prepared with ultrasonic treatment for dimethoate was higher than those without ultrasonic treatment and the corresponding degradation rate doubled those of the catalyst obtained by impregnation.The probable cause was that for catalysts prepared with ultrasonic treatment,Fe3O4 was well dispersed on the catalyst surface with small particle size,or existed in non-crystalline amorphous state,and Fe content on the catalyst surface was higher than those without ultrasonic treatment.展开更多
基金Supported by the National Natural Science Foundation of China(51076154)National Key Technology Research&Development Program of 12 th Five-year of China(2011BAD15B05)
文摘Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.
文摘Fe3O4 catalyst supported on spherical γ-Al2O3 was prepared with and without ultrasonic treatment during the impregnation step,and the heterogeneous catalytic oxidation of dimethoate wastewater was conducted with Fenton reagent.Then,the physical and chemical properties of the catalysts were analyzed by means of XRD,ICP-AES and SEM,especially the effect of Fe3O4 dispersity on γ-Al2O3.The results showed that the activity of the supported catalysts prepared with ultrasonic treatment for dimethoate was higher than those without ultrasonic treatment and the corresponding degradation rate doubled those of the catalyst obtained by impregnation.The probable cause was that for catalysts prepared with ultrasonic treatment,Fe3O4 was well dispersed on the catalyst surface with small particle size,or existed in non-crystalline amorphous state,and Fe content on the catalyst surface was higher than those without ultrasonic treatment.