The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The ef...The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.展开更多
In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and...In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and Si precursor, respectively. Stable vesicles first formed in 0.03 mol·L-11:2 mixture of anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmission electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shell Fe3O4@MCM-41 particles is 100–150 nm and most of them are in elliptical shape. The dispersion of magnetic particles is very good and magnetization values are up to 33.44 emu·g-1, which are superior to that of other Fe3O4 materials reported.展开更多
基金Project(2013DFA51290)supported by International S&T Cooperation Program of China
文摘The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.
基金Supported by the Natural Science Foundation of Heilongjiang Province(B201010)the Education Department of Heilongjiang Province(12511595)
文摘In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and Si precursor, respectively. Stable vesicles first formed in 0.03 mol·L-11:2 mixture of anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmission electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shell Fe3O4@MCM-41 particles is 100–150 nm and most of them are in elliptical shape. The dispersion of magnetic particles is very good and magnetization values are up to 33.44 emu·g-1, which are superior to that of other Fe3O4 materials reported.