The γ'-Fe4N films on Cu underlayers are deposited on the glass and Si substrates by dc magnetron reactive sputtering. The effects of Cu underlayer on the structure, morphology and magnetic properties of the γ'-Fe4...The γ'-Fe4N films on Cu underlayers are deposited on the glass and Si substrates by dc magnetron reactive sputtering. The effects of Cu underlayer on the structure, morphology and magnetic properties of the γ'-Fe4N films are studied. The single-phase γ'-Fe4N films with Cu underlayers on the glass substrate are obtained, while the mixture of Fe and γ'-Fe4N is observed on the Si substrate. In comparison with the films without Cu underlayers, the grains of the films with Cu underlayers exhibit a non-uniform size distribution and give rise to a rougher surface. The magnetic measurements indicate that the γ'-Fe4N films show a good soft ferromagnetic behavior. The enhanced coercivity in the films with Cu underlayers is observed due to the deterioration of the crystallographic structure as well as the rougher surface.展开更多
Multiphase Fe/N nanoparticles were synthesized by means of chemical vapor reaction, the influence of the preparing parameters on the properties of particles was studied carefully dur-ing the first nitriding process. T...Multiphase Fe/N nanoparticles were synthesized by means of chemical vapor reaction, the influence of the preparing parameters on the properties of particles was studied carefully dur-ing the first nitriding process. The optimum process was determined. Single phaseγ’-Fe4N was prepared by twice-nitriding. Multiphase iron-nitride really transformsγ’-Fe4N nanoparticle of sin-gle-phase and uniform. Moreover, the mechanism of nanoparticle nucleation and growth, including phase-transformation, was revealed. In addition, the mircograph, particle size, physical phases, schemical constituents and magnetic properties before and after phase-transformation were char-acterized initially.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61434002,61204097,11274214 and 51301099the National High-Tech Research and Development Program of China under Grant No 2014AA032904+1 种基金the Chang Jiang Scholars and Innovative Team Development Plan by the Ministry of Education under Grant No IRT1156the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant Nos 20121404130001 and 20121404120003
文摘The γ'-Fe4N films on Cu underlayers are deposited on the glass and Si substrates by dc magnetron reactive sputtering. The effects of Cu underlayer on the structure, morphology and magnetic properties of the γ'-Fe4N films are studied. The single-phase γ'-Fe4N films with Cu underlayers on the glass substrate are obtained, while the mixture of Fe and γ'-Fe4N is observed on the Si substrate. In comparison with the films without Cu underlayers, the grains of the films with Cu underlayers exhibit a non-uniform size distribution and give rise to a rougher surface. The magnetic measurements indicate that the γ'-Fe4N films show a good soft ferromagnetic behavior. The enhanced coercivity in the films with Cu underlayers is observed due to the deterioration of the crystallographic structure as well as the rougher surface.
基金supported by the China Funds of Excellent Youth and China Funds of Post Doctorthe National Natural Science Foundation of China and Post Doctor Funds of Heilongjiang Province.
文摘Multiphase Fe/N nanoparticles were synthesized by means of chemical vapor reaction, the influence of the preparing parameters on the properties of particles was studied carefully dur-ing the first nitriding process. The optimum process was determined. Single phaseγ’-Fe4N was prepared by twice-nitriding. Multiphase iron-nitride really transformsγ’-Fe4N nanoparticle of sin-gle-phase and uniform. Moreover, the mechanism of nanoparticle nucleation and growth, including phase-transformation, was revealed. In addition, the mircograph, particle size, physical phases, schemical constituents and magnetic properties before and after phase-transformation were char-acterized initially.