FePt thin films and [FePt/Ag]n multilayer thin films were prepared by magnetron sputtering technique and subsequent annealing process. By comparing the microstructure and magnetic properties of these two kinds of thin...FePt thin films and [FePt/Ag]n multilayer thin films were prepared by magnetron sputtering technique and subsequent annealing process. By comparing the microstructure and magnetic properties of these two kinds of thin films, effects of Ag addition on the structure and properties of FePt thin films were investigated. Proper Ag addition was found helpful for FePt phase transition at lower annealing temperature. With Ag addition, the magnetic domain pattern of FePt thin film changed from maze-like pattern to more discrete island-like domain pattern in [FePt/Ag]n multilayer thin films. In addition, introducing nonmagnetic Ag hindered FePt grains from growing larger. The in-depth defects in FePt films and [FePt/Ag]n multilayer films verify that Ag addition is attributed to a large number of pinning site defects in [FePt/Ag]n film and therefore has effects on its magnetic properties and microstructure.展开更多
FePt/Ag thin films were deposited by magnetron sputtering onto 7059 glass substrates, then were annealed at 550 ℃ for 30 min. Nanostructured FePt/Ag films were successfully obtained with the magnetic easy axis of L10...FePt/Ag thin films were deposited by magnetron sputtering onto 7059 glass substrates, then were annealed at 550 ℃ for 30 min. Nanostructured FePt/Ag films were successfully obtained with the magnetic easy axis of L10 FePt perpendicular to the film plane. It was found that the development of (001) texture depended strongly on the thicknesses of FePt magnetic layer and Ag underlayer. The L10 ordered FePt(15 nm)/Ag(50 nm) with (001) orientation can be obtained. And the perpendicular coercivity of FePt(15 nm)/Ag(50 nm) film reached to 7.2× 10^5 A/m, whereas the longitudinal one was only 3.2×10^4 A/m. The non-magnetic Ag underlayer can not only induce (001) orientation and ordering of FePt grains, but also reduce the intergrain interactions.展开更多
基金the National Natural Science Foundation of China (No. 60571010)the Open Foundation of the Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices of Hubei Province in Hubei University
文摘FePt thin films and [FePt/Ag]n multilayer thin films were prepared by magnetron sputtering technique and subsequent annealing process. By comparing the microstructure and magnetic properties of these two kinds of thin films, effects of Ag addition on the structure and properties of FePt thin films were investigated. Proper Ag addition was found helpful for FePt phase transition at lower annealing temperature. With Ag addition, the magnetic domain pattern of FePt thin film changed from maze-like pattern to more discrete island-like domain pattern in [FePt/Ag]n multilayer thin films. In addition, introducing nonmagnetic Ag hindered FePt grains from growing larger. The in-depth defects in FePt films and [FePt/Ag]n multilayer films verify that Ag addition is attributed to a large number of pinning site defects in [FePt/Ag]n film and therefore has effects on its magnetic properties and microstructure.
文摘FePt/Ag thin films were deposited by magnetron sputtering onto 7059 glass substrates, then were annealed at 550 ℃ for 30 min. Nanostructured FePt/Ag films were successfully obtained with the magnetic easy axis of L10 FePt perpendicular to the film plane. It was found that the development of (001) texture depended strongly on the thicknesses of FePt magnetic layer and Ag underlayer. The L10 ordered FePt(15 nm)/Ag(50 nm) with (001) orientation can be obtained. And the perpendicular coercivity of FePt(15 nm)/Ag(50 nm) film reached to 7.2× 10^5 A/m, whereas the longitudinal one was only 3.2×10^4 A/m. The non-magnetic Ag underlayer can not only induce (001) orientation and ordering of FePt grains, but also reduce the intergrain interactions.