We propose a 3D model feature line extraction method using templates for guidance. The 3D model is first projected into a depth map, and a set of candidate feature points are extracted. Then, a conditional random fiel...We propose a 3D model feature line extraction method using templates for guidance. The 3D model is first projected into a depth map, and a set of candidate feature points are extracted. Then, a conditional random fields (CRF) model is established to match the sketch points and the candidate feature points. Using sketch strokes, the candidate feature points can then be connected to obtain the feature lines, and using a CRF-matching model, the 2D image shape similarity features and 3D model geometric features can be effectively integrated. Finally, a relational metric based on shape and topological similarity is proposed to evaluate the matching results, and an iterative matching process is applied to obtain the globally optimized model feature lines. Experimental results showed that the proposed method can extract sound 3D model feature lines which correspond to the initial sketch template.展开更多
The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to...The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to realize the self adapting incremental press bending by adopting the feature line equation. The feature line equation, which is based on the database of the status of practical processes, can be adjusted in time, and the forming precision can be improved. It is important to correctly select and reasonably predict the feature line equations to enhance the accuracy of the incremental press bending based on the feature line database and algorithm. The determination of the feature line equation settles necessary data foundation for further research on the database of self-adapting incremental press bending, and it supplies a new clue for the development of self-adapting incremental press bending.展开更多
In this paper the authors present a novel semi-automatic feature line detection technique for meshes. Taking into account the distance and orientation between two vertices on meshes and the curvature information of ve...In this paper the authors present a novel semi-automatic feature line detection technique for meshes. Taking into account the distance and orientation between two vertices on meshes and the curvature information of vertices, they first find an initial feature line which connects some user-specified vertices on meshes; then parameterize the “feature strip” surrounding the feature line onto a planar domain using a vertex flattening technique; and refine the flattened feature strip using the 2D snakes approach to make the feature line smoother and more accurate; lastly they get the feature line by mapping the refined line back to the original meshes. Experimental results showed that their method can extract the feature line rapidly and precisely. As an ap- plication, they propose a mesh decomposition method based on the detected feature line.展开更多
An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion ...An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion parameters by nonlinear least square. The thought of step by step was added when the optimization method working. 3D world coordination is not need to know, and the method is easy to implement. The experiment result shows its high accuracy.展开更多
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3...Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.展开更多
Feature lines are fundamental shape descriptors and have been extensively applied to computer graphics, computer-aided design, image processing, and non-photorealistic renderingi This paper introduces a unified variat...Feature lines are fundamental shape descriptors and have been extensively applied to computer graphics, computer-aided design, image processing, and non-photorealistic renderingi This paper introduces a unified variational framework for detecting generic feature lines on polygonal meshes. The classic Mumford-Shah model is extended to surfaces. Using F-convergence method and discrete differential geometry, we discretize the proposed variational model to sequential coupled sparse linear systems. Through quadratic polyno- mials fitting, we develop a method for extracting valleys of functions defined on surfaces. Our approach provides flexible and intuitive control over the detecting procedure, and is easy to implement. Several measure functions are devised for different types of feature lines, and we apply our approach to various polygonal meshes ranging from synthetic to measured models. The experiments demonstrate both the effectiveness of our algorithms and the visual quality of results.展开更多
A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approa...A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.展开更多
Mesh segmentation is one of the important issues in digital geometry processing. Region growing method has been proven to be a efficient method for 3D mesh segmentation. However, in mesh segmentation, feature line ext...Mesh segmentation is one of the important issues in digital geometry processing. Region growing method has been proven to be a efficient method for 3D mesh segmentation. However, in mesh segmentation, feature line extraction algorithm is computationally costly, and the over-segmentation problem still exists during region merging processing. In order to tackle these problems, a fast and efficient mesh segmentation method based on improved region growing is proposed in this paper. Firstly, the dihedral angle of each non-boundary edge is defined and computed simply, then the sharp edges are detected and feature lines are extracted. After region growing process is finished, an improved region merging method will be performed in two steps by considering some geometric criteria. The experiment results show the feature line extraction algorithm can obtain the same geometric information fast with less computational costs and the improved region merging method can solve over-segmentation well.展开更多
A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest N...A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has relatively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function determination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.展开更多
Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fi...Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.展开更多
We present an algorithm for segmenting a mesh into patches whose boundaries are aligned with prominent ridge and valley lines of the shape. Our key insight is that this problem can be formulated as correlation cluster...We present an algorithm for segmenting a mesh into patches whose boundaries are aligned with prominent ridge and valley lines of the shape. Our key insight is that this problem can be formulated as correlation clustering(CC), a graph partitioning problem originating from the data mining community.The formulation lends two unique advantages to our method over existing segmentation methods. First,since CC is non-parametric, our method has few parameters to tune. Second, as CC is governed by edge weights in the graph, our method offers users direct and local control over the segmentation result. Our technical contributions include the construction of the weighted graph on which CC is defined, a strategy for rapidly computing CC on this graph, and an interactive tool for editing the segmentation. Our experiments show that our method produces qualitatively better segmentations than existing methods on a wide range of inputs.展开更多
A novel classification approach called modified center-based feature line(MCFL)is proposed to reduce the computational cost of the nearest feature line(NFL)and maintain the advantages of NFL.Unlike NFL,MCFL defines a ...A novel classification approach called modified center-based feature line(MCFL)is proposed to reduce the computational cost of the nearest feature line(NFL)and maintain the advantages of NFL.Unlike NFL,MCFL defines a different type of feature line and utilizes both the query point’s local information and corresponding class-global information in training set.In experiments provided,the comparisons with the nearest neighbor(NN),NFL,and other NFL-refined approaches show that the computation time of MCFL can be shortened dramatically with less accuracy decreases.MCFL proposed is probably a better choice for the classification application tasks of large-scale dataset.展开更多
This paper proposes a Visual-Inertial Odometry(VIO)algorithm that relies solely on monocular cameras and Inertial Measurement Units(IMU),capable of real-time self-position estimation for robots during movement.By inte...This paper proposes a Visual-Inertial Odometry(VIO)algorithm that relies solely on monocular cameras and Inertial Measurement Units(IMU),capable of real-time self-position estimation for robots during movement.By integrating the optical flow method,the algorithm tracks both point and line features in images simultaneously,significantly reducing computational complexity and the matching time for line feature descriptors.Additionally,this paper advances the triangulation method for line features,using depth information from line segment endpoints to determine their Plcker coordinates in three-dimensional space.Tests on the EuRoC datasets show that the proposed algorithm outperforms PL-VIO in terms of processing speed per frame,with an approximate 5%to 10%improvement in both relative pose error(RPE)and absolute trajectory error(ATE).These results demonstrate that the proposed VIO algorithm is an efficient solution suitable for low-computing platforms requiring real-time localization and navigation.展开更多
This paper presents a robust visual simultaneous localization and mapping(SLAM) system that leverages point and structural line features in dynamic man-made environments. Manhanttan world assumption is considered and ...This paper presents a robust visual simultaneous localization and mapping(SLAM) system that leverages point and structural line features in dynamic man-made environments. Manhanttan world assumption is considered and the structural line features in such man-made environments provide rich geometric constraint, e.g., parallelism. Such a geometric constraint can be therefore used to rectify 3 D maplines after initialization. To cope with dynamic scenarios, the proposed system are divided into four main threads including 2 D dynamic object tracking, visual odometry, local mapping and loop closing. The 2 D tracker is responsible to track the object and capture the moving object in bounding boxes. In such a case, the dynamic background can be excluded and the outlier point and line features can be effectively removed. To parameterize 3 D lines, we use Pl ¨ucker line coordinates in initialization and projection processes, and utilize the orthonormal representation in unconstrained graph optimization process. The proposed system has been evaluated in both benchmark datasets and real-world scenarios, which reveals a more robust performance in most of the experiments compared with the existing state-of-the-art methods.展开更多
We propose a novel technique to extract features from a range image and use them to produce a 3D pen-and-ink style portrait similar to a traditional artistic drawing. Unlike most previous template-based, component-bas...We propose a novel technique to extract features from a range image and use them to produce a 3D pen-and-ink style portrait similar to a traditional artistic drawing. Unlike most previous template-based, component-based or example-based face sketching methods, which work from a frontal photograph as input, our system uses a range image as input. Our method runs in real-time for models of moderate complexity, allowing the pose and drawing style to be modified interactively. Portrait drawing in our system makes use of occluding contours and suggestive contours as the most important shape cues. However, current 3D feature line detection methods require a smooth mesh and cannot be reliably applied directly to noisy range images. We thus present an improved silhouette line detection algorithm. Feature edges related to the significant parts of a face are extracted from the range image, connected, and smoothed, allowing us to construct chains of line paths which can then be rendered as desired. We also incorporate various portrait-drawing principles to provide several simple yet effective non- photorealistic portrait renderers such as a pen-and-ink shader, a hatch shader and a sketch shader. These are able to generate various life-like impressions in different styles from a user-chosen viewpoint. To obtain satisfactory results, we refine rendered output by smoothing changes in line thickness and opacity. We are careful to provide appropriate visual cues to enhance the viewer's comprehension of the human face. Our experimental results demonstrate the robustness and effectiveness of our approach, and further suggest that our approach can be extended to other 3D geometric objects.展开更多
The objective assessment of image quality is important for image processing, which has been paid much attention to in recent years. However, there were few reports about objective quality assessment methods for geomet...The objective assessment of image quality is important for image processing, which has been paid much attention to in recent years. However, there were few reports about objective quality assessment methods for geometrically distorted images. Different from the routine image degradation processing (for example, noise addi- tion, contrast change and lossy compression), the geo- metric distortion results in the changes of the spatial relationship of image pixels, which makes the traditional quality assessment algorithms, such as mean square error (MSE) and peak signal to noise ratio (PSNR) failure to obtain expected assessment results. In this paper, a full reference image quality assessment algorithm is proposed specifically for the quality evaluation of geometrically distorted images. This assessment algorithm takes into account three key factors, such as distortion intensity, distortion change rate and line feature index for perceptual quality assessment of images. Experimental results in this study show that the proposed assessment algorithm not only is significantly better than those of the traditional objective assessment methods such as PSNR and structural similarity index measurement (SSIM), but also has significant correlation with human subjective assessment.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 61272219, 61100110, and 61021062)the National High-Tech R&D Program (863) of China (No. 2007AA01Z334)+1 种基金the Program for New Century Excellent Talents in University (No. NCET-0404605)the Science and Technology Program of Jiangsu Province, China (Nos. BE2010072, BE2011058, and BY2012190)
文摘We propose a 3D model feature line extraction method using templates for guidance. The 3D model is first projected into a depth map, and a set of candidate feature points are extracted. Then, a conditional random fields (CRF) model is established to match the sketch points and the candidate feature points. Using sketch strokes, the candidate feature points can then be connected to obtain the feature lines, and using a CRF-matching model, the 2D image shape similarity features and 3D model geometric features can be effectively integrated. Finally, a relational metric based on shape and topological similarity is proposed to evaluate the matching results, and an iterative matching process is applied to obtain the globally optimized model feature lines. Experimental results showed that the proposed method can extract sound 3D model feature lines which correspond to the initial sketch template.
文摘The basie idea and method about determination of the feature line equations and how to apply them to the numerical control of the press bending of panei skins were introduced. Research indicates that it is feasible to realize the self adapting incremental press bending by adopting the feature line equation. The feature line equation, which is based on the database of the status of practical processes, can be adjusted in time, and the forming precision can be improved. It is important to correctly select and reasonably predict the feature line equations to enhance the accuracy of the incremental press bending based on the feature line database and algorithm. The determination of the feature line equation settles necessary data foundation for further research on the database of self-adapting incremental press bending, and it supplies a new clue for the development of self-adapting incremental press bending.
基金Project supported by the National Natural Science Foundation of China (Nos. 60403038, 60033010) and the National Basic Research Program (973) of China (No. 2002CB312101)
文摘In this paper the authors present a novel semi-automatic feature line detection technique for meshes. Taking into account the distance and orientation between two vertices on meshes and the curvature information of vertices, they first find an initial feature line which connects some user-specified vertices on meshes; then parameterize the “feature strip” surrounding the feature line onto a planar domain using a vertex flattening technique; and refine the flattened feature strip using the 2D snakes approach to make the feature line smoother and more accurate; lastly they get the feature line by mapping the refined line back to the original meshes. Experimental results showed that their method can extract the feature line rapidly and precisely. As an ap- plication, they propose a mesh decomposition method based on the detected feature line.
文摘An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion parameters by nonlinear least square. The thought of step by step was added when the optimization method working. 3D world coordination is not need to know, and the method is easy to implement. The experiment result shows its high accuracy.
基金National Natural Science Foundation of China(Nos.41861054,41371423,61966010)National Key R&D Program of China(No.2016YFB0502105)。
文摘Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.
文摘Feature lines are fundamental shape descriptors and have been extensively applied to computer graphics, computer-aided design, image processing, and non-photorealistic renderingi This paper introduces a unified variational framework for detecting generic feature lines on polygonal meshes. The classic Mumford-Shah model is extended to surfaces. Using F-convergence method and discrete differential geometry, we discretize the proposed variational model to sequential coupled sparse linear systems. Through quadratic polyno- mials fitting, we develop a method for extracting valleys of functions defined on surfaces. Our approach provides flexible and intuitive control over the detecting procedure, and is easy to implement. Several measure functions are devised for different types of feature lines, and we apply our approach to various polygonal meshes ranging from synthetic to measured models. The experiments demonstrate both the effectiveness of our algorithms and the visual quality of results.
基金Project(90820302) supported by the National Natural Science Foundation of China
文摘A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.
基金Supported by the National Natural Science Foundation of China(61272192,61379112)the NSFC-Guang dong Joint Fund(U1135003)
文摘Mesh segmentation is one of the important issues in digital geometry processing. Region growing method has been proven to be a efficient method for 3D mesh segmentation. However, in mesh segmentation, feature line extraction algorithm is computationally costly, and the over-segmentation problem still exists during region merging processing. In order to tackle these problems, a fast and efficient mesh segmentation method based on improved region growing is proposed in this paper. Firstly, the dihedral angle of each non-boundary edge is defined and computed simply, then the sharp edges are detected and feature lines are extracted. After region growing process is finished, an improved region merging method will be performed in two steps by considering some geometric criteria. The experiment results show the feature line extraction algorithm can obtain the same geometric information fast with less computational costs and the improved region merging method can solve over-segmentation well.
基金Supported by Grant for State Key Program for Basic Research of China (973) (No. 2007CB311006)
文摘A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has relatively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function determination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.
基金Project (No. 2006J0017) supported by the Natural Science Foundation of Fujian Province, China
文摘Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.
基金supported in part by a gift from Adobe System, Inc
文摘We present an algorithm for segmenting a mesh into patches whose boundaries are aligned with prominent ridge and valley lines of the shape. Our key insight is that this problem can be formulated as correlation clustering(CC), a graph partitioning problem originating from the data mining community.The formulation lends two unique advantages to our method over existing segmentation methods. First,since CC is non-parametric, our method has few parameters to tune. Second, as CC is governed by edge weights in the graph, our method offers users direct and local control over the segmentation result. Our technical contributions include the construction of the weighted graph on which CC is defined, a strategy for rapidly computing CC on this graph, and an interactive tool for editing the segmentation. Our experiments show that our method produces qualitatively better segmentations than existing methods on a wide range of inputs.
基金This work was supported by the State Key Development Program for Basic Research of China(No.2007CB311006).
文摘A novel classification approach called modified center-based feature line(MCFL)is proposed to reduce the computational cost of the nearest feature line(NFL)and maintain the advantages of NFL.Unlike NFL,MCFL defines a different type of feature line and utilizes both the query point’s local information and corresponding class-global information in training set.In experiments provided,the comparisons with the nearest neighbor(NN),NFL,and other NFL-refined approaches show that the computation time of MCFL can be shortened dramatically with less accuracy decreases.MCFL proposed is probably a better choice for the classification application tasks of large-scale dataset.
文摘This paper proposes a Visual-Inertial Odometry(VIO)algorithm that relies solely on monocular cameras and Inertial Measurement Units(IMU),capable of real-time self-position estimation for robots during movement.By integrating the optical flow method,the algorithm tracks both point and line features in images simultaneously,significantly reducing computational complexity and the matching time for line feature descriptors.Additionally,this paper advances the triangulation method for line features,using depth information from line segment endpoints to determine their Plcker coordinates in three-dimensional space.Tests on the EuRoC datasets show that the proposed algorithm outperforms PL-VIO in terms of processing speed per frame,with an approximate 5%to 10%improvement in both relative pose error(RPE)and absolute trajectory error(ATE).These results demonstrate that the proposed VIO algorithm is an efficient solution suitable for low-computing platforms requiring real-time localization and navigation.
基金supported by the Institute for Guo Qiang of Tsinghua University (Grant No. 2019GQG1023)the National Natural Science Foundation of China (Grant No. 61873140)the Independent Research Program of Tsinghua University (Grant No. 2018Z05JDX002)。
文摘This paper presents a robust visual simultaneous localization and mapping(SLAM) system that leverages point and structural line features in dynamic man-made environments. Manhanttan world assumption is considered and the structural line features in such man-made environments provide rich geometric constraint, e.g., parallelism. Such a geometric constraint can be therefore used to rectify 3 D maplines after initialization. To cope with dynamic scenarios, the proposed system are divided into four main threads including 2 D dynamic object tracking, visual odometry, local mapping and loop closing. The 2 D tracker is responsible to track the object and capture the moving object in bounding boxes. In such a case, the dynamic background can be excluded and the outlier point and line features can be effectively removed. To parameterize 3 D lines, we use Pl ¨ucker line coordinates in initialization and projection processes, and utilize the orthonormal representation in unconstrained graph optimization process. The proposed system has been evaluated in both benchmark datasets and real-world scenarios, which reveals a more robust performance in most of the experiments compared with the existing state-of-the-art methods.
基金Supported by the National Basic Research Program of China (Grant No.2006CB303102)the National Natural Science Foundation of China (Grant Nos.60473103 and 60703028)
文摘We propose a novel technique to extract features from a range image and use them to produce a 3D pen-and-ink style portrait similar to a traditional artistic drawing. Unlike most previous template-based, component-based or example-based face sketching methods, which work from a frontal photograph as input, our system uses a range image as input. Our method runs in real-time for models of moderate complexity, allowing the pose and drawing style to be modified interactively. Portrait drawing in our system makes use of occluding contours and suggestive contours as the most important shape cues. However, current 3D feature line detection methods require a smooth mesh and cannot be reliably applied directly to noisy range images. We thus present an improved silhouette line detection algorithm. Feature edges related to the significant parts of a face are extracted from the range image, connected, and smoothed, allowing us to construct chains of line paths which can then be rendered as desired. We also incorporate various portrait-drawing principles to provide several simple yet effective non- photorealistic portrait renderers such as a pen-and-ink shader, a hatch shader and a sketch shader. These are able to generate various life-like impressions in different styles from a user-chosen viewpoint. To obtain satisfactory results, we refine rendered output by smoothing changes in line thickness and opacity. We are careful to provide appropriate visual cues to enhance the viewer's comprehension of the human face. Our experimental results demonstrate the robustness and effectiveness of our approach, and further suggest that our approach can be extended to other 3D geometric objects.
文摘The objective assessment of image quality is important for image processing, which has been paid much attention to in recent years. However, there were few reports about objective quality assessment methods for geometrically distorted images. Different from the routine image degradation processing (for example, noise addi- tion, contrast change and lossy compression), the geo- metric distortion results in the changes of the spatial relationship of image pixels, which makes the traditional quality assessment algorithms, such as mean square error (MSE) and peak signal to noise ratio (PSNR) failure to obtain expected assessment results. In this paper, a full reference image quality assessment algorithm is proposed specifically for the quality evaluation of geometrically distorted images. This assessment algorithm takes into account three key factors, such as distortion intensity, distortion change rate and line feature index for perceptual quality assessment of images. Experimental results in this study show that the proposed assessment algorithm not only is significantly better than those of the traditional objective assessment methods such as PSNR and structural similarity index measurement (SSIM), but also has significant correlation with human subjective assessment.