期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Simulation Method and Feature Analysis of Shutdown Pressure Evolution During Multi-Cluster Fracturing Stimulation
1
作者 Huaiyin He Longqing Zou +5 位作者 Yanchao Li Yixuan Wang Junxiang Li Huan Wen Bei Chang Lijun Liu 《Energy Engineering》 EI 2024年第1期111-123,共13页
Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown a... Multistage multi-cluster hydraulic fracturing has enabled the economic exploitation of shale reservoirs,but the interpretation of hydraulic fracture parameters is challenging.The pressure signals after pump shutdown are influenced by hydraulic fractures,which can reflect the geometric features of hydraulic fracture.The shutdown pressure can be used to interpret the hydraulic fracture parameters in a real-time and cost-effective manner.In this paper,a mathematical model for shutdown pressure evolution is developed considering the effects of wellbore friction,perforation friction and fluid loss in fractures.An efficient numerical simulation method is established by using the method of characteristics.Based on this method,the impacts of fracture half-length,fracture height,opened cluster and perforation number,and filtration coefficient on the evolution of shutdown pressure are analyzed.The results indicate that a larger fracture half-length may hasten the decay of shutdown pressure,while a larger fracture height can slow down the decay of shutdown pressure.A smaller number of opened clusters and perforations can significantly increase the perforation friction and decrease the overall level of shutdown pressure.A larger filtration coefficient may accelerate the fluid filtration in the fracture and hasten the drop of the shutdown pressure.The simulation method of shutdown pressure,as well as the analysis results,has important implications for the interpretation of hydraulic fracture parameters. 展开更多
关键词 Multistage multi-cluster hydraulic fracturing pump shutdown pressure feature analysis numerical simulation
下载PDF
Automatic Satisfaction Analysis in Call Centers Considering Global Features of Emotion and Duration 被引量:1
2
作者 Jing Liu Chaomin Wang +7 位作者 Yingnan Zhang Pengyu Cong Liqiang Xu Zhijie Ren Jin Hu Xiang Xie Junlan Feng Jingming Kuang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期58-64,共7页
Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.I... Analysis of customers' satisfaction provides a guarantee to improve the service quality in call centers.In this paper,a novel satisfaction recognition framework is introduced to analyze the customers' satisfaction.In natural conversations,the interaction between a customer and its agent take place more than once.One of the difficulties insatisfaction analysis at call centers is that not all conversation turns exhibit customer satisfaction or dissatisfaction. To solve this problem,an intelligent system is proposed that utilizes acoustic features to recognize customers' emotion and utilizes the global features of emotion and duration to analyze the satisfaction. Experiments on real-call data show that the proposed system offers a significantly higher accuracy in analyzing the satisfaction than the baseline system. The average F value is improved to 0. 701 from 0. 664. 展开更多
关键词 satisfaction analysis emotion recognition call centers global features of emotion and duration
下载PDF
A Single Feasibility Study of System Multi-feature Analysis and Evaluation Tool Based on AADL Model
3
作者 FENG Guangding MENG Bo XIANG Yangkui 《International Journal of Plant Engineering and Management》 2023年第4期193-212,共20页
The tool for analyzing and evaluating system characteristics based on the AADL model can achieve real-time,reliability,security,and schedulability analysis and evaluation for software-intensive systems.It provides a c... The tool for analyzing and evaluating system characteristics based on the AADL model can achieve real-time,reliability,security,and schedulability analysis and evaluation for software-intensive systems.It provides a complete solution for quality analysis of real-time,reliability,safety,and schedulability in the design and demonstration stages of software-intensive systems.By using the system′s multi-characteristic(real-time capability,reliability,safety,schedulability)analysis and evaluation tool based on AADL models,it can meet the software non-functional requirements stipulated by the existing model development standards and specifications.This effectively enhances the efficiency of demonstrating the compliance of the system′s non-functional quality attributes in the design work of our unit′s software-intensive system.It can also improve the performance of our unit′s software-intensive system in engineering inspections and requirement reviews conducted by various organizations.The improvement in the quality level of software-intensive systems can enhance the market competitiveness of our unit′s electronic products. 展开更多
关键词 IMA multi⁃feature analysis AADL analysis tool
下载PDF
Integrating Audio-Visual Features and Text Information for Story Segmentation of News Video 被引量:1
4
作者 Liu Hua-yong, Zhou Dong-ru School of Computer,Wuhan University,Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第04A期1070-1074,共5页
Video data are composed of multimodal information streams including visual, auditory and textual streams, so an approach of story segmentation for news video using multimodal analysis is described in this paper. The p... Video data are composed of multimodal information streams including visual, auditory and textual streams, so an approach of story segmentation for news video using multimodal analysis is described in this paper. The proposed approach detects the topic-caption frames, and integrates them with silence clips detection results, as well as shot segmentation results to locate the news story boundaries. The integration of audio-visual features and text information overcomes the weakness of the approach using only image analysis techniques. On test data with 135 400 frames, when the boundaries between news stories are detected, the accuracy rate 85.8% and the recall rate 97.5% are obtained. The experimental results show the approach is valid and robust. 展开更多
关键词 news video story segmentation audio-visual features analysis text detection
下载PDF
Machine learning based online fault prognostics for nonstationary industrial process via degradation feature extraction and temporal smoothness analysis 被引量:2
5
作者 HU Yun-yun ZHAO Chun-hui KE Zhi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3838-3855,共18页
Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in gen... Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process. 展开更多
关键词 fault prognostic NONSTATIONARY industrial process fault degradation-oriented slow feature analysis(FDSFA) temporal smoothness regularization
下载PDF
Real-Time Multimodal Biometric Authentication of Human Using Face Feature Analysis 被引量:1
6
作者 Rohit Srivastava Ravi Tomar +3 位作者 Ashutosh Sharma Gaurav Dhiman Naveen Chilamkurti Byung-Gyu Kim 《Computers, Materials & Continua》 SCIE EI 2021年第10期1-19,共19页
As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their characte... As multimedia data sharing increases,data security in mobile devices and its mechanism can be seen as critical.Biometrics combines the physiological and behavioral qualities of an individual to validate their character in real-time.Humans incorporate physiological attributes like a fingerprint,face,iris,palm print,finger knuckle print,Deoxyribonucleic Acid(DNA),and behavioral qualities like walk,voice,mark,or keystroke.The main goal of this paper is to design a robust framework for automatic face recognition.Scale Invariant Feature Transform(SIFT)and Speeded-up Robust Features(SURF)are employed for face recognition.Also,we propose a modified Gabor Wavelet Transform for SIFT/SURF(GWT-SIFT/GWT-SURF)to increase the recognition accuracy of human faces.The proposed scheme is composed of three steps.First,the entropy of the image is removed using Discrete Wavelet Transform(DWT).Second,the computational complexity of the SIFT/SURF is reduced.Third,the accuracy is increased for authentication by the proposed GWT-SIFT/GWT-SURF algorithm.A comparative analysis of the proposed scheme is done on real-time Olivetti Research Laboratory(ORL)and Poznan University of Technology(PUT)databases.When compared to the traditional SIFT/SURF methods,we verify that the GWT-SIFT achieves the better accuracy of 99.32%and the better approach is the GWT-SURF as the run time of the GWT-SURF for 100 images is 3.4 seconds when compared to the GWT-SIFT which has a run time of 4.9 seconds for 100 images. 展开更多
关键词 BIOMETRICS real-time multimodal biometrics real-time face recognition feature analysis
下载PDF
AUTO-EXTRACTING TECHNIQUE OF DYNAMIC CHAOS FEATURES FOR NONLINEAR TIME SERIES 被引量:6
7
作者 CHEN Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期524-529,共6页
The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature informa... The main purpose of nonlinear time series analysis is based on the rebuilding theory of phase space, and to study how to transform the response signal to rebuilt phase space in order to extract dynamic feature information, and to provide effective approach for nonlinear signal analysis and fault diagnosis of nonlinear dynamic system. Now, it has already formed an important offset of nonlinear science. But, traditional method cannot extract chaos features automatically, and it needs man's participation in the whole process. A new method is put forward, which can implement auto-extracting of chaos features for nonlinear time series. Firstly, to confirm time delay r by autocorrelation method; Secondly, to compute embedded dimension m and correlation dimension D; Thirdly, to compute the maximum Lyapunov index λmax; Finally, to calculate the chaos degree Dch of Poincare map, and the non-circle degree Dnc and non-order degree Dno of quasi-phase orbit. Chaos features extracting has important meaning to fault diagnosis of nonlinear system based on nonlinear chaos features. Examples show validity of the proposed method. 展开更多
关键词 Nonlinear time series analysis Chaos Feature extracting Fault diagnosis
下载PDF
Evaluation of echo features of ultrasonic flaws and its intelligent pattern recognition 被引量:1
8
作者 刚铁 吴林 《China Welding》 EI CAS 1997年第1期22-27,共6页
In this paper, three types of weld flaw were taken as target, evaluation and recognition of flaw echo features were studied. On the basis of experimental study and theoretical analysis, 26 features have been extracted... In this paper, three types of weld flaw were taken as target, evaluation and recognition of flaw echo features were studied. On the basis of experimental study and theoretical analysis, 26 features have been extracted from each echo samples. A method which is based on the xtatislical hypothesis testing and used for feature evaluation and optimum subset selection was explored. Thus, the dimensionality reduction of feature space was brought out, and simultaneously the amount of calculation was decreased. An intelligent pattern classifier with B-P type neural network was constructed which was characterized by high speed and accuracy for learning. Using a half of total samples as training set and others as testing set, the learning efficiency and the classification ability of network model were studied. The results of experiment showed that the learning rate of different training samples was about 100%. The results of recognition was satisfactory when the optimum feature subset was taken as the sample's feature vectors. The average recognition rate of three type flaws was about 87.6%, and the best recognition rate amounted to 97%. 展开更多
关键词 ultrasonic detection feature analysis pattern recognition
下载PDF
Feature Analysis of the Atmospheric Particulate Pollutants (PM_(10) and PM_(2.5)) in Wenzhou City 被引量:1
9
作者 Yuequn Song Shufan Ye Qiangqiang Wang 《Meteorological and Environmental Research》 CAS 2013年第4期37-41,共5页
[ Objective] The research aimed to analyze characteristics of the atmospheric particulate pollutants ( PMlo and PM2.s) in Wenzhou City. [Method] We analyzed interannual change rule of the dust haze in Wenzhou during... [ Objective] The research aimed to analyze characteristics of the atmospheric particulate pollutants ( PMlo and PM2.s) in Wenzhou City. [Method] We analyzed interannual change rule of the dust haze in Wenzhou during 1978 -2008. Moreover, we respectively set monitoring points in urban district, industrial park and beauty spot of Wenzhou in summer and winter of 2010. Element, ion and polycyclic aromatic hydrocarbon com- positions and morphology of the particulate matter were analyzed. [ Result] Dust haze in Wenzhou City mainly appeared in winter and spring, which was related to local meteorological condition. In summer and winter, both PMlo and PM2.s concentrations presented the characteristic of industrial park 〉 commercial area 〉 beauty spot. Chain-like particle aggregates and ultrafine particles were main composition of the atmospheric particulate matter in Wenzhou. Contribution rate of the spherical particle amount was smaller than metropolis, which was related to local industry and traffic. Fe element had the most content in particulate matter. Mass concentration was mainly composed of 6 elements, such as Na, Si, S, K, Ca and Fe. Total concentration of the six elements occupied 70% -80% of the 16 elements. SO^- and NH4* in particulate matter were higher. They were mainly from human activity. Main compositions of the polycyclic aromatic hydrocarbon were naphthalene, anthracene, benzo (b) fluoranthene, indeno (1,2, 3-cd) pyrene and benzo (g, h, i) perylene, which was related to abrupt increase of the motor vehicle. [ Condusion] The research provided scientific basis and technology support for controlling atmospheric particulate matter pollution in Wenzhou City by government and related department. 展开更多
关键词 Atmospheric particulate pollutants PM10 PM2.5 Feature analysis China
下载PDF
Assessment of glaucoma using extreme learning machine and fractal feature analysis
10
作者 Subramaniam Kavitha Karuppusamy Duraiswamy Sakthivel Karthikeyan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第6期1255-1257,共3页
Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(... Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial 展开更多
关键词 In Assessment of glaucoma using extreme learning machine and fractal feature analysis ELM FIGURE
下载PDF
Study on the Features and Risk Assessment of Drought in Guilin
11
作者 Xianda Bai 《Meteorological and Environmental Research》 CAS 2013年第2期8-11,共4页
Based on the precipitation data of all counties in Guilin from 1957 to 2010, the analysis has been made on the features of spatial and temporal distribution, the probability of occurrence and the periodic change of dr... Based on the precipitation data of all counties in Guilin from 1957 to 2010, the analysis has been made on the features of spatial and temporal distribution, the probability of occurrence and the periodic change of drought in Guilin. Afterwards, by using the method of disaster risk assessment, the disaster-causing factors, breed disasters environment and fragility of hazard-bearing body of Guilin drought have been analyzed, and the comprehensive evaluation on drought disaster has been made. The results show that above medium drought in Guilin mainly appeared in au- tumn, followed by winter, while Guilin only suffered from slight drought in spring; the principal period of drought occurrence in Guilin was six years, while its secondary period was two years; on the whole, drought risk was high in the southeast and low in the northwest. 展开更多
关键词 Guilin drought Feature analysis Risk assessment China
下载PDF
Automated Dynamic Cellular Analysis in Time-Lapse Microscopy
12
作者 Shuntaro Aotake Chamidu Atupelage +3 位作者 Zicong Zhang Kota Aoki Hiroshi Nagahashi Daisuke Kiga 《Journal of Biosciences and Medicines》 2016年第3期44-50,共7页
Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-... Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-stained live cell cultures. Because these images do not have adequate textural variations. Manual cell segmentation requires massive labor and is a time consuming process. This paper describes an automated cell segmentation method for localizing the cells of Chinese hamster ovary cell culture. Several kinds of high-dimensional feature descriptors, K-means clustering method and Chan-Vese model-based level set are used to extract the cellular regions. The region extracted are used to classify phases in cell cycle. The segmentation results were experimentally assessed. As a result, the proposed method proved to be significant for cell isolation. In the evaluation experiments, we constructed a database of Chinese Hamster Ovary Cell’s microscopic images which includes various photographing environments under the guidance of a biologist. 展开更多
关键词 High Dimension Feature analysis Microscopic Cell Image Cell Division Cycle Identification Active Contour Model K-Means Clustering
下载PDF
Research on the relationship between geophysical structural features and earthquakes in Mid-Yunnan and the surrounding area 被引量:1
13
作者 Wu Guiju Tan Hongbo +1 位作者 Yang Guangliang Shen Chongyang 《Geodesy and Geodynamics》 2015年第5期384-391,共8页
In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures str... In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures strikes are different compared with those in the research region. In other words, the geophysical advantageous directions from the gravity and magnetic anomalies are not the same as those caused by the surface structures. The local horizontal gradient results from the gravity and magnetic anomalies show that the majority of earthquakes occur along an intense fault zone, which is a zone of abrupt gravity and negative magnetic change, where the shapes match very well. From the distribution of earthquakes in this area, we find that it has experienced more than 11 earthquake events with magnitude larger than Ms7.0. In addition, water development sites such as Jinshajiang, Lancangjiang, and the Red River and Pearl River watersheds have been hit ten times by earthquakes of this magnitude. It is observed that strong earthquakes occur frequently in the Holocene active fault zone. 展开更多
关键词 Gravity anomaly Magnetic anomaly Multi-scale wavelet analysis Tectonics Earthquake 3D sliding average method Geological feature River system
下载PDF
A Brief Analysis of the Formal Characteristics of Kiln Dwellings in Tongchuan Area,Shaanxi
14
作者 LI Yan-jun WU Li-yue MA Tian 《Journal of Literature and Art Studies》 2022年第5期518-529,共12页
The unique topography and historical and cultural background have determined the diversity and uniqueness of kiln architecture in the Tongchuan area.In addition to the double-slope residential architecture,traditional... The unique topography and historical and cultural background have determined the diversity and uniqueness of kiln architecture in the Tongchuan area.In addition to the double-slope residential architecture,traditional kiln dwellings with regional characteristics such as Leaning on the cliff cave dwelling,ground Pit cave dwelling and Freestanding cave dwellings have also been formed.This paper takes the inheritance and protection of traditional kiln as the starting point,and through field research and literature analysis,we have systematically collected images,measured data,and drawn up horizontal and vertical profiles and three-dimensional structure drawings of the traditional kiln dwellings in Tongchuan,and concluded the three types of forms and structural characteristics and artistic form characteristics of the traditional kiln dwellings in Tongchuan.The aim is to provide a basis and reference for the protection and inheritance of tangible and intangible cultural heritage in Shaanxi,as well as for subsequent research in this field. 展开更多
关键词 Tongchuan area SHAANXI Cave Dwelling feature analysis protection and inheritance
下载PDF
Application of Particle Swarm Optimization to Fault Condition Recognition Based on Kernel Principal Component Analysis 被引量:1
15
作者 WEI Xiu-ye PAN Hong-xia HUANG Jin-ying WANG Fu-jie 《International Journal of Plant Engineering and Management》 2009年第3期129-135,共7页
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke... Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines. 展开更多
关键词 particle swarm optimization kernel principal component analysis kernel function parameter feature extraction gearbox condition recognition
下载PDF
Developing global image feature analysis models to predict cancer risk and prognosis
16
作者 Bin Zheng Yuchen Qiu +3 位作者 Faranak Aghaei Seyedehnafiseh Mirniaharikandehei Morteza Heidari Gopichandh Danala 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期150-163,共14页
In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest... In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently.Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images,which include steps in detecting and segmenting suspicious regions or tumors,followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors.However,due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors,segmenting subtle regions is often difficult and unreliable.Additionally,ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches.In our recent studies,we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis.We trained and tested several models using images obtained from full-field digital mammography,magnetic resonance imaging,and computed tomography of breast,lung,and ovarian cancers.Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice.Furthermore,the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis.Therefore,the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power. 展开更多
关键词 Machine learning models of medical images Global medial image feature analysis Cancer risk prediction Cancer prognosis prediction Quantitative imaging markers
下载PDF
A dive into spectral inference networks: improved algorithms for self-supervised learning of continuous spectral representations
17
作者 J.WU S.F.WANG P.PERDIKARIS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1199-1224,共26页
We propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint operators.We represent target eigenfunctions with coordinate-based neural networks an... We propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint operators.We represent target eigenfunctions with coordinate-based neural networks and employ the Fourier positional encodings to enable the approximation of high-frequency modes.We formulate a self-supervised training objective for spectral learning and propose a novel regularization mechanism to ensure that the network finds the exact eigenfunctions instead of a space spanned by the eigenfunctions.Furthermore,we investigate the effect of weight normalization as a mechanism to alleviate the risk of recovering linear dependent modes,allowing us to accurately recover a large number of eigenpairs.The effectiveness of our methods is demonstrated across a collection of representative benchmarks including both local and non-local diffusion operators,as well as high-dimensional time-series data from a video sequence.Our results indicate that the present algorithm can outperform competing approaches in terms of both approximation accuracy and computational cost. 展开更多
关键词 spectral learning partial differential equation(PDE) neural network slow features analysis
下载PDF
Brain Tumor Segmentation through Level Based Learning Model
18
作者 K.Dinesh Babu C.Senthil Singh 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期709-720,共12页
Brain tumors are potentially fatal presence of cancer cells over a human brain,and they need to be segmented for accurate and reliable planning of diag-nosis.Segmentation process must be carried out in different regio... Brain tumors are potentially fatal presence of cancer cells over a human brain,and they need to be segmented for accurate and reliable planning of diag-nosis.Segmentation process must be carried out in different regions based on which the stages of cancer can be accurately derived.Glioma patients exhibit a different level of challenge in terms of cancer or tumors detection as the Magnetic Resonance Imaging(MRI)images possess varying sizes,shapes,positions,and modalities.The scanner used for sensing the location of tumors cells will be sub-jected to additional protocols and measures for accuracy,in turn,increasing the time and affecting the performance of the entire model.In this view,Convolutional Neural Networks deliver suitable models for efficient segmentation and thus delivered promising results.The previous strategies and models failed to adhere to diversity of sizes and shapes,proving to be a well-established solution for detecting tumors of bigger size.Tumors tend to be smaller in size and shape during their premature stages and they can easily evade the algorithms of Convolutional Neural Network(CNN).This proposal intends to furnish a detailed model for sensing early stages of cancer and hence perform segmentation irrespective of the current size and shape of tumors.The size of networks and layers will lead to a significant weightage when multiple kernel sizes are involved,especially in multi-resolution environments.On the other hand,the proposed model is designed with a novel approach including a dilated convolution and level-based learning strat-egy.When the convolution process is dilated,the process of feature extraction deals with multiscale objective and level-based learning eliminates the shortcoming of previous models,thereby enhancing the quality of smaller tumors cells and shapes.The level-based learning approach also encapsulates the feature recon-struction processes which highlights the sensing of small-scale tumors growth.Inclusively,segmenting the images is performed with better accuracy and hence detection becomes better when compared to that of hierarchical approaches. 展开更多
关键词 Glioma detection SEGMENTATION smaller tumour GROWTH machine learning feature analysis
下载PDF
Reduction of distortion and improvement of efficiency for gridding of scattered gravity and magnetic data 被引量:1
19
作者 张晨 姚长利 +3 位作者 谢永茂 郑元满 关胡良 洪东明 《Applied Geophysics》 SCIE CSCD 2012年第4期378-390,494,共14页
This paper presents a reasonable gridding-parameters extraction method for setting the optimal interpolation nodes in the gridding of scattered observed data. The method can extract optimized gridding parameters based... This paper presents a reasonable gridding-parameters extraction method for setting the optimal interpolation nodes in the gridding of scattered observed data. The method can extract optimized gridding parameters based on the distribution of features in raw data. Modeling analysis proves that distortion caused by gridding can be greatly reduced when using such parameters. We also present some improved technical measures that use human- machine interaction and multi-thread parallel technology to solve inadequacies in traditional gridding software. On the basis of these methods, we have developed software that can be used to grid scattered data using a graphic interface. Finally, a comparison of different gridding parameters on field magnetic data from Ji Lin Province, North China demonstrates the superiority of the proposed method in eliminating the distortions and enhancing gridding efficiency. 展开更多
关键词 Scattered data gridding parameters analysis of distribution features human-machine interaction multi-thread parallel technology
下载PDF
Detection technique of moving target based on passive millimeter wave
20
作者 李世中 牟春阳 张勇 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期29-33,共5页
To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microw... To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microwave integrated cir- cuit (MMIC) millimeter wave radiometer is built, and the measured data are obtained by experiment under different condi- tions. Based on feature analysis of testing signals, it points out that the peak of the first pulse and interval of two peak pulses are valid features which can reflect the motion characteristic of target. A method to calculate the moving speed of target is put forward. The calculating results indicate that the proposed method has enough accuracy and is feasible to determine the parameters of the moving target using for passive millimeter wave system. 展开更多
关键词 passive millimeter wave technology millimeter wave radiometer detection of moving target feature analysis moving speed of target
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部