This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-...This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.展开更多
Objective:To analyze the application effect of feedforward control in outpatient blood specimen management.Methods:1,200 patients who had their venous blood collected in outpatient phlebotomy room of our hospital'...Objective:To analyze the application effect of feedforward control in outpatient blood specimen management.Methods:1,200 patients who had their venous blood collected in outpatient phlebotomy room of our hospital's outpatient clinic from January 2021 to April 2021 were selected as study subjects and divided into 600 cases in the control group and 600 cases in the observation group.The two groups of patients were compared in terms of their satisfaction with the staff,the efficiency of the nurses and the quality of nursing care,turnaround time before specimen analysis,the rejection rate of the blood specimens,and the time of result reporting.Results:After the implementation of feedforward control,patients'satisfaction with staff,nurses work efficiency and quality of care,turnaround time before specimen analysis,specimen rejection rate,and result reporting time in the observation group were significantly higher than those in the control group(P<0.05).Conclusion:The application of feedforward control in the management of outpatient blood specimens has significant effect,which effectively improves patients'satisfaction,enhances the efficiency of nurses and the quality of nursing care,shortens the turnaround time of specimens before analysis and the reporting time of results,and reduces the rejection rate of specimens.展开更多
Parallel manipulators with less than six degrees of freedom (DOF) have been increasingly used in high-speed hybrid machine tools. The structural features of parallel manipulators are dynamic, a characteristic that i...Parallel manipulators with less than six degrees of freedom (DOF) have been increasingly used in high-speed hybrid machine tools. The structural features of parallel manipulators are dynamic, a characteristic that is particularly significant when these manipulators are used in high-speed machine tools. However, normal kinematic control method cannot satisfy the requirements of the control system. Many researchers use model-based dynamic control methods, such as the dynamic feedforward control method. However, these methods are rarely used in hybrid machine tools because of the complex dynamic model of the parallel manipulator. In order to study the dynamic control method of parallel manipulators, the dynamic feedforward control method is used in the dynamic control system of a 3-PSP (prismatic-spherical-prismatic) 3-DOF spatial parallel manipulator used as a spindle head in a high-speed hybrid machine tool. Using kinematic analysis as basis and the Newton-Euler method, we derive the dynamic model of the parallel manipulator. Furthermore, a model-based dynamic feedforward control system consisting of both kinematic control and dynamic control subsystems is established. The dynamic control subsystem consists of two modules. One is used to eliminate the influence of the dynamic characteristics of high-speed movement, and the other is used to eliminate the dynamic disturbances in the milling process. Finally, the simulation model of the dynamic feedforward control system of the 3-PSP parallel manipulator is constructed in Matlab/Simulink. The simulations of the control system eliminating the influence of the dynamic characteristics and dynamic disturbances are conducted. A comparative study between the simulations and the normal kinematic control method is also presented.The simulations prove that the dynamic feedforward control method effectively eliminates the influence of the dynamic disturbances and dynamic characteristics of the parallel manipulator on high-speed machine tools, and significantly improves the trajectory accuracy. This is the first attempt to introduce the dynamic feedfordward control method into the 3-PSP spatial parallel manipulator whose dynamic model is complex and provides a study basis for the real-time dynamic control of the high-speed hybrid machine tools.展开更多
Objective:To explore the application of feedforward control in the nursing emergency management of COVID-19.Methods:The feedforward control theory was applied to the emergency management of COVID-19 nursing,including ...Objective:To explore the application of feedforward control in the nursing emergency management of COVID-19.Methods:The feedforward control theory was applied to the emergency management of COVID-19 nursing,including grasping the latest epidemic information,preparing for the early stage,formulating nursing workflow,implementing flexible management,standardizing isolation and protection measures,unifying nursing document record format,and implementing humanistic care.Results:During the period of support to Wuhan,the nursing work in the isolated area was orderly,the nursing staff's job satisfaction was high,no nursing errors and hospital infections occurred.Conclusion:Efficient feedforward control in the nursing emergency management that could avoid work blindness to a certain extent and play a guiding role in maintaining the normal operation of treatment and nursing work and protecting the safety of patients and medical staff in the ward during the epidemic period of COVID-19.展开更多
Three feedforward (FFD) control techniques for position-servo machine axesare compared. All three FFD controllers are used with two different PID feedback (FBK) controllers.The two different FBK controllers have two d...Three feedforward (FFD) control techniques for position-servo machine axesare compared. All three FFD controllers are used with two different PID feedback (FBK) controllers.The two different FBK controllers have two different closed-loop bandwidths. They are demonstratedusing experimental data from a linear motor test system and from simulations. Laboratory resultsusing the linear motor hardware demonstrate that the velocity & acceleration (V&A) FFD controllerimproves tracking in all case considered, while the other two FFD controllers actually degradeperformance in many cases. Through simulation this degradation is attributed to extreme sensitivityto round off errors. This sensitivity is the result of a complex controller that is implementedoutside of the feedback loop.展开更多
A feedforward controller for the automatic regulation of chemical composition of molten steel in the tundish of a continuous casting machine is proposed in this work. The flow of molten steel inside the tundish is mod...A feedforward controller for the automatic regulation of chemical composition of molten steel in the tundish of a continuous casting machine is proposed in this work. The flow of molten steel inside the tundish is modeled as a distributed parameter system, and the resulting partial differential equation is transformed into a set of ordinary differential equations by means of the finite differences technique. From the above set and using a proper boundary condition, a feedforward control law is synthesized. No experimental tests are reported, however, the dynamic performance of the controller is illustrated by means of numerical simulations.展开更多
The optimal control is investigated for linear systems affected by external harmonic disturbance and applied to vibration control systems of offshore steel jacket platforms. The wave-induced force is the dominant load...The optimal control is investigated for linear systems affected by external harmonic disturbance and applied to vibration control systems of offshore steel jacket platforms. The wave-induced force is the dominant load that offshore structures are subjected to, and it can be taken as harmonic excitation for the system. The linearized Morison equation is employed to estimate the wave loading. The main result concerns the existence and design of a realizable optimal regulator, which is proposed to damp the forced oscillation in an optimal fashion. For demonstration of the effectiveness of the control scheme, the platform performance is investigated for different wave states. The simulations are based on the tuned mass damper and the active mass damper control devices. It is demonstrated that the control scheme is useful in reducing the displacement response of jacket-type offshore platforms.展开更多
Feedforward control based on an accurate dynamic model is an effective approach to reduce the dynamic effect of the robot and improve its performance. However, due to the complicated work environment with considerable...Feedforward control based on an accurate dynamic model is an effective approach to reduce the dynamic effect of the robot and improve its performance. However, due to the complicated work environment with considerable uncertainty, it is difficult to obtain a high-precision dynamic model of the robot, which severely deteriorates the achievable control performance. This paper proposes an iterative learning method to accurately design the industrial feedforward controller and compensate for the external uncertain dynamic load of the robot. Based on a standard dynamic model, a complete linear feedforward controller is presented.An iterative design strategy is given to iteratively update the feedforward controller by combining the Moore-Penrose Inverse and the PID learning rate. Experiments are carried out on a 5-DOF industrial hybrid robot to validate the effectiveness of the proposed iterative learning method. The experiment results illustrate that the industrial feedforward controller can rapidly converge to the optimal controller and significantly improve the servo performance by using the proposed method. This paper provides an effective method for applying iterative learning control to an unopened industrial control system. It is very useful for the practical control of hybrid robots in industrial field.展开更多
To improve the efficiency of nitrogen removalwith lower energy consumption,the study of feedforwardcontrol was carried out on a pilot-scale anaerobic-anoxicoxic(AAO)plant for the treatment of municipal wastewater.The ...To improve the efficiency of nitrogen removalwith lower energy consumption,the study of feedforwardcontrol was carried out on a pilot-scale anaerobic-anoxicoxic(AAO)plant for the treatment of municipal wastewater.The effluent qualities of the pilot plant underdifferent control strategies were investigated.The resultsindicated that the change of external recycle was not asuitable approach to regulate the sludge concentration ofplug-flow reactors;adjusting the aeration valve anddissolved oxygen set-point according to ammonia loadcould overcome the impact of influent fluctuation;and thedenitrification potential could be estimated based on thetransit time of anoxic zone and the relative content ofcarbon resource entering the anoxic zone.Simple feedforwardcontrol strategies for aeration and internal recyclewere subsequently proposed and validated.The nitrogenremoval was successfully improved in the pilot plant.Theeffluent total nitrogen had decreased by 29.9%and wassteadily controlled below 15 mg·L^(-1).Furthermore,approximately 38%of the energy for aeration had beensaved.展开更多
A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in abov...A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in above rated operation. The pseudo-LIDAR measurement data are generated from a commercial software- Bladed using a designed sampling strategy. The nonlinear wind turbine model has been simplified and linearised at a set of equilibrium operating points. The feedforward controller is firstly developed based on a linearised model at an above rated wind speed, and then expanded to the full above rated operational envelope by employing gain scheduling strategy. The combined feedforward and baseline feedback control is simulated on a 5MW industrial wind turbine model. Simulation studies demonstrate that the proposed control strategy can improve the rotor and tower load reduction performance for large wind turbines.展开更多
The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedfo...The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.展开更多
A three-dimensional (3-D) physiological articulatory model was developed to account for the biomechanical properties of the speech organs in speech production. Control of the model to investigate the mechanism of sp...A three-dimensional (3-D) physiological articulatory model was developed to account for the biomechanical properties of the speech organs in speech production. Control of the model to investigate the mechanism of speech production requires an efficient control module to estimate muscle activation patterns, which is used to manipulate the 3-D physiological articulatory model, according to the desired articulatory posture. For this purpose, a feedforward control strategy was developed by mapping the articulatory target to the corresponding muscle activation pattern via the intrinsic representation of vowel articulation. In this process, the articulatory postures are first mapped to the corresponding intrinsic representations; then, the articulatory postures are clustered in the intrinsic representations space and a nonlinear function is approximated for each cluster to map the intrinsic representation of vowel articulation to the muscle activation pattern by using general regression neural networks (GRNN). The results show that the feedforward control module is able to manipulate the 3-D physiological articulatory model for vowel production with high accuracy both acoustically and articulatorily.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
The linear systems affected by additive external sinusoidal disturbances is studied. The problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is prop...The linear systems affected by additive external sinusoidal disturbances is studied. The problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is proposed of realizable feedforward and feedback optimal control law for a linear time invariant system with sinusoidal disturbances. The algorithm of solving the optimal control law is given. It is shown that the control law is easily realized and is robust with respect to errors produced by the external sinusoidal disturbances through simulation results.展开更多
To track the rapidly changing temperature profiles of thermal cycling of polymerase chain reaction (PCR) accurately, an innovative feedforward variable structural proportional-integral-derivative (FVSPID) controll...To track the rapidly changing temperature profiles of thermal cycling of polymerase chain reaction (PCR) accurately, an innovative feedforward variable structural proportional-integral-derivative (FVSPID) controller was developed. Based on the step response test data of the heat block, a reduced first order model was estabfished at different operating points. Based on the reduced model, the FVSPID controller combined a feedforward path with the variable structural proportional-integral-derivative (PID) control. The modified feedforward action provided directly the optimal predictive power for the desired setpoint to speed up the dynamic response. To cooperate with the feedforward action, a variable structural PID was applied, where the P mode was used in the case of the largest errors to speed up response, whereas the PD mode was used in the case of larger errors to suppress overshoot, and finally the PID mode was applied for small error conditions to eliminate the steady state offset. Experimental results illustrated that compared to the conventional PID controller, the FVSPID controller can not only reduce the time taken to complete a standard PCR protocol, but also improve the accuracy of gene amplification.展开更多
In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial rob...In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial robot,which has six degree of freedom(6-DOF).The whole adaptive force control algorithm is implemented on TMS320C30 micro-processor whose instruction cycle is 60ns.The results of the force control experiments prove that AZPEF force control makes robot have good robustness and quick response ability.展开更多
The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of d...The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion,we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable,efficient and robust to reject the external disturbances.展开更多
The feedforward and feedback control strategy of water flowrate based on the analysis of thermal process in water cooling box was proposed, and the control strategy was applied to wire rod hot rolling at Baosteel Co. ...The feedforward and feedback control strategy of water flowrate based on the analysis of thermal process in water cooling box was proposed, and the control strategy was applied to wire rod hot rolling at Baosteel Co. The operation has proved that the strategy can control water flowrate in the cooling water box reasonably to ensure the temperature requirement of the wire discharged from the cooling water box.展开更多
基金supported by Prince Sultan University,Riyadh,Saudi Arabia,under research grant SEED-2022-CE-95。
文摘This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.
文摘Objective:To analyze the application effect of feedforward control in outpatient blood specimen management.Methods:1,200 patients who had their venous blood collected in outpatient phlebotomy room of our hospital's outpatient clinic from January 2021 to April 2021 were selected as study subjects and divided into 600 cases in the control group and 600 cases in the observation group.The two groups of patients were compared in terms of their satisfaction with the staff,the efficiency of the nurses and the quality of nursing care,turnaround time before specimen analysis,the rejection rate of the blood specimens,and the time of result reporting.Results:After the implementation of feedforward control,patients'satisfaction with staff,nurses work efficiency and quality of care,turnaround time before specimen analysis,specimen rejection rate,and result reporting time in the observation group were significantly higher than those in the control group(P<0.05).Conclusion:The application of feedforward control in the management of outpatient blood specimens has significant effect,which effectively improves patients'satisfaction,enhances the efficiency of nurses and the quality of nursing care,shortens the turnaround time of specimens before analysis and the reporting time of results,and reduces the rejection rate of specimens.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA041901)National S&T Major Project of China(Grant No. 2009ZX04014-035)National Basic Research Program of China (973 Program, Grant No. 2006CB705400)
文摘Parallel manipulators with less than six degrees of freedom (DOF) have been increasingly used in high-speed hybrid machine tools. The structural features of parallel manipulators are dynamic, a characteristic that is particularly significant when these manipulators are used in high-speed machine tools. However, normal kinematic control method cannot satisfy the requirements of the control system. Many researchers use model-based dynamic control methods, such as the dynamic feedforward control method. However, these methods are rarely used in hybrid machine tools because of the complex dynamic model of the parallel manipulator. In order to study the dynamic control method of parallel manipulators, the dynamic feedforward control method is used in the dynamic control system of a 3-PSP (prismatic-spherical-prismatic) 3-DOF spatial parallel manipulator used as a spindle head in a high-speed hybrid machine tool. Using kinematic analysis as basis and the Newton-Euler method, we derive the dynamic model of the parallel manipulator. Furthermore, a model-based dynamic feedforward control system consisting of both kinematic control and dynamic control subsystems is established. The dynamic control subsystem consists of two modules. One is used to eliminate the influence of the dynamic characteristics of high-speed movement, and the other is used to eliminate the dynamic disturbances in the milling process. Finally, the simulation model of the dynamic feedforward control system of the 3-PSP parallel manipulator is constructed in Matlab/Simulink. The simulations of the control system eliminating the influence of the dynamic characteristics and dynamic disturbances are conducted. A comparative study between the simulations and the normal kinematic control method is also presented.The simulations prove that the dynamic feedforward control method effectively eliminates the influence of the dynamic disturbances and dynamic characteristics of the parallel manipulator on high-speed machine tools, and significantly improves the trajectory accuracy. This is the first attempt to introduce the dynamic feedfordward control method into the 3-PSP spatial parallel manipulator whose dynamic model is complex and provides a study basis for the real-time dynamic control of the high-speed hybrid machine tools.
基金We would like to thank Peng‑Zhi ZHANG and Xue‑Song WANG for their assistance in nursing workflow sorting.
文摘Objective:To explore the application of feedforward control in the nursing emergency management of COVID-19.Methods:The feedforward control theory was applied to the emergency management of COVID-19 nursing,including grasping the latest epidemic information,preparing for the early stage,formulating nursing workflow,implementing flexible management,standardizing isolation and protection measures,unifying nursing document record format,and implementing humanistic care.Results:During the period of support to Wuhan,the nursing work in the isolated area was orderly,the nursing staff's job satisfaction was high,no nursing errors and hospital infections occurred.Conclusion:Efficient feedforward control in the nursing emergency management that could avoid work blindness to a certain extent and play a guiding role in maintaining the normal operation of treatment and nursing work and protecting the safety of patients and medical staff in the ward during the epidemic period of COVID-19.
基金This project is supported by United State's National Science Foundation (No.997761).
文摘Three feedforward (FFD) control techniques for position-servo machine axesare compared. All three FFD controllers are used with two different PID feedback (FBK) controllers.The two different FBK controllers have two different closed-loop bandwidths. They are demonstratedusing experimental data from a linear motor test system and from simulations. Laboratory resultsusing the linear motor hardware demonstrate that the velocity & acceleration (V&A) FFD controllerimproves tracking in all case considered, while the other two FFD controllers actually degradeperformance in many cases. Through simulation this degradation is attributed to extreme sensitivityto round off errors. This sensitivity is the result of a complex controller that is implementedoutside of the feedback loop.
文摘A feedforward controller for the automatic regulation of chemical composition of molten steel in the tundish of a continuous casting machine is proposed in this work. The flow of molten steel inside the tundish is modeled as a distributed parameter system, and the resulting partial differential equation is transformed into a set of ordinary differential equations by means of the finite differences technique. From the above set and using a proper boundary condition, a feedforward control law is synthesized. No experimental tests are reported, however, the dynamic performance of the controller is illustrated by means of numerical simulations.
文摘The optimal control is investigated for linear systems affected by external harmonic disturbance and applied to vibration control systems of offshore steel jacket platforms. The wave-induced force is the dominant load that offshore structures are subjected to, and it can be taken as harmonic excitation for the system. The linearized Morison equation is employed to estimate the wave loading. The main result concerns the existence and design of a realizable optimal regulator, which is proposed to damp the forced oscillation in an optimal fashion. For demonstration of the effectiveness of the control scheme, the platform performance is investigated for different wave states. The simulations are based on the tuned mass damper and the active mass damper control devices. It is demonstrated that the control scheme is useful in reducing the displacement response of jacket-type offshore platforms.
基金the National Key Research and Development Program of China(Grant No.2017YFE0111300)EU H2020-MSCA-RISEECSASDPE(Grant No.734272)the National Natural Science Foundation of China(Grant No.51975321)。
文摘Feedforward control based on an accurate dynamic model is an effective approach to reduce the dynamic effect of the robot and improve its performance. However, due to the complicated work environment with considerable uncertainty, it is difficult to obtain a high-precision dynamic model of the robot, which severely deteriorates the achievable control performance. This paper proposes an iterative learning method to accurately design the industrial feedforward controller and compensate for the external uncertain dynamic load of the robot. Based on a standard dynamic model, a complete linear feedforward controller is presented.An iterative design strategy is given to iteratively update the feedforward controller by combining the Moore-Penrose Inverse and the PID learning rate. Experiments are carried out on a 5-DOF industrial hybrid robot to validate the effectiveness of the proposed iterative learning method. The experiment results illustrate that the industrial feedforward controller can rapidly converge to the optimal controller and significantly improve the servo performance by using the proposed method. This paper provides an effective method for applying iterative learning control to an unopened industrial control system. It is very useful for the practical control of hybrid robots in industrial field.
基金This work was supported by the key project under the National Science and Technology Supporting Program of China(No.2006BAC19B01-05)the project of Research Fund of State Key Joint Laboratory of Environmental Simulation and Pollution Control.
文摘To improve the efficiency of nitrogen removalwith lower energy consumption,the study of feedforwardcontrol was carried out on a pilot-scale anaerobic-anoxicoxic(AAO)plant for the treatment of municipal wastewater.The effluent qualities of the pilot plant underdifferent control strategies were investigated.The resultsindicated that the change of external recycle was not asuitable approach to regulate the sludge concentration ofplug-flow reactors;adjusting the aeration valve anddissolved oxygen set-point according to ammonia loadcould overcome the impact of influent fluctuation;and thedenitrification potential could be estimated based on thetransit time of anoxic zone and the relative content ofcarbon resource entering the anoxic zone.Simple feedforwardcontrol strategies for aeration and internal recyclewere subsequently proposed and validated.The nitrogenremoval was successfully improved in the pilot plant.Theeffluent total nitrogen had decreased by 29.9%and wassteadily controlled below 15 mg·L^(-1).Furthermore,approximately 38%of the energy for aeration had beensaved.
基金supported by UK Engineering and Physical Sciences Research Council(EPSRC)Supergen Wind project(No.EP/N006224/1)
文摘A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine's load reduction in above rated operation. The pseudo-LIDAR measurement data are generated from a commercial software- Bladed using a designed sampling strategy. The nonlinear wind turbine model has been simplified and linearised at a set of equilibrium operating points. The feedforward controller is firstly developed based on a linearised model at an above rated wind speed, and then expanded to the full above rated operational envelope by employing gain scheduling strategy. The combined feedforward and baseline feedback control is simulated on a 5MW industrial wind turbine model. Simulation studies demonstrate that the proposed control strategy can improve the rotor and tower load reduction performance for large wind turbines.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.
基金Supported partly by the Promoting Science and Technology by the Japan Ministry of Education,Culture,Sports,Science and Technology and the SCOPE of the Ministry of Internal Affairs and Communications (MIC),Japan (No.071705001)
文摘A three-dimensional (3-D) physiological articulatory model was developed to account for the biomechanical properties of the speech organs in speech production. Control of the model to investigate the mechanism of speech production requires an efficient control module to estimate muscle activation patterns, which is used to manipulate the 3-D physiological articulatory model, according to the desired articulatory posture. For this purpose, a feedforward control strategy was developed by mapping the articulatory target to the corresponding muscle activation pattern via the intrinsic representation of vowel articulation. In this process, the articulatory postures are first mapped to the corresponding intrinsic representations; then, the articulatory postures are clustered in the intrinsic representations space and a nonlinear function is approximated for each cluster to map the intrinsic representation of vowel articulation to the muscle activation pattern by using general regression neural networks (GRNN). The results show that the feedforward control module is able to manipulate the 3-D physiological articulatory model for vowel production with high accuracy both acoustically and articulatorily.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
文摘The linear systems affected by additive external sinusoidal disturbances is studied. The problem is to damp this forced oscillation in an optimal fashion. The main result of this paper is a new design approach is proposed of realizable feedforward and feedback optimal control law for a linear time invariant system with sinusoidal disturbances. The algorithm of solving the optimal control law is given. It is shown that the control law is easily realized and is robust with respect to errors produced by the external sinusoidal disturbances through simulation results.
基金Supported by National Natural Science Foundation of P.R.China(60474038)Science Research Foundation of Beijing Jiaotong University(2005SM005)Specialized Research Fund for the Doctoral Program of Higher Education(20060004002)
基金Supported by the National Natural Science Foundation of China (No.60574038) and the Open Project Program of the State KeyLaboratory of Bioreactor Engineering/ECUST.
文摘To track the rapidly changing temperature profiles of thermal cycling of polymerase chain reaction (PCR) accurately, an innovative feedforward variable structural proportional-integral-derivative (FVSPID) controller was developed. Based on the step response test data of the heat block, a reduced first order model was estabfished at different operating points. Based on the reduced model, the FVSPID controller combined a feedforward path with the variable structural proportional-integral-derivative (PID) control. The modified feedforward action provided directly the optimal predictive power for the desired setpoint to speed up the dynamic response. To cooperate with the feedforward action, a variable structural PID was applied, where the P mode was used in the case of the largest errors to speed up response, whereas the PD mode was used in the case of larger errors to suppress overshoot, and finally the PID mode was applied for small error conditions to eliminate the steady state offset. Experimental results illustrated that compared to the conventional PID controller, the FVSPID controller can not only reduce the time taken to complete a standard PCR protocol, but also improve the accuracy of gene amplification.
文摘In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial robot,which has six degree of freedom(6-DOF).The whole adaptive force control algorithm is implemented on TMS320C30 micro-processor whose instruction cycle is 60ns.The results of the force control experiments prove that AZPEF force control makes robot have good robustness and quick response ability.
基金Supported by National Natural Science Foundation of China (10771101) and Science Research and Development Foundation of Changchun University of Technology (2008A29)
基金the National Natural Science Foundation of China (Grant No.60074001)the Natural Science Foundation of Shandong Province (Grant No.Y2000G02).
文摘The optimal control problem was studied for linear time-varying systems,which was affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions. To damp the effect of disturbances in an optimal fashion,we obtained a new feedforward and feedback optimal control law and gave the control algorithm by solving a Riccati differential equation and a matrix differential equation. Simulation results showed that the achieved optimal control law was realizable,efficient and robust to reject the external disturbances.
文摘The feedforward and feedback control strategy of water flowrate based on the analysis of thermal process in water cooling box was proposed, and the control strategy was applied to wire rod hot rolling at Baosteel Co. The operation has proved that the strategy can control water flowrate in the cooling water box reasonably to ensure the temperature requirement of the wire discharged from the cooling water box.