There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Fe...There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Feixianguan Formation and thus hampers natural gas exploration in the region,so further study is urgently required.Using experimental tests of natural gas composition,stable isotopes,and noble gas isotopes with gas chromatography(GC)and mass spectrometry(MS)studies of source rock and reservoir asphalt saturated hydrocarbons,the natural gas geochemical characteristics,the genetic identification and a gas-source comparison of the Feixianguan Formation were studied.Then,con-strained by the thermal history,the histories of gas generation and expulsion were restored by basin simulation technology.Finally,a gas accumulation model was established for the Feixianguan Formation.The results showed that(1)the H_(2)S-rich and H2S-poor gas reservoirs of the Feixianguan Formation are distributed on the east and west sides of the Kaijiang-Liangping trough in the Eastern Sichuan Basin,respectively.The carbon and hydrogen isotope compositions of the natural gas in the gas reservoirs are generally heavy and have typical characteristics of high-maturity dry gas reservoirs.(2)The natural gas of the Feixianguan Formation is organic thermogenic gas,which is mainly oil-type gas generated by the secondary cracking of crude oil.The gas-generating parent material is mainly type II kerogen.(3)The natural gas of the Feixianguan Formation in the Eastern Sichuan Basin was mainly generated by argil-laceous source rocks of the Upper Permian Longtan Formation.(4)Natural gas accumulation occurred as follows:the paleo-structure heights were filled with crude oil in the Early Jurassic,and paleo-oil res-ervoirs were formed in the Feixianguan Formation;during the Middle-Late Jurassic,the paleo-oil res-ervoirs were cracked when the reservoir temperatures rose above 160 C,and paleo-gas reservoirs were formed.Since the end of the Late Jurassic,the paleo-gas reservoirs have been adjusted and reformed to form the present-day natural gas reservoirs.These results provide a basis for studying natural gas accumulation dynamics of the Feixianguan Formation in the Eastern Sichuan Basin.展开更多
The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and frac...The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and fractures of different genetic mechanisms and scales are often developed in association,and it is difficult to classify reservoir types merely based on static data such as outcrop observation,and cores and logging data.In the study,the reservoirs in the Feixianguan Formation are grouped into five types by combining dynamic and static data,that is,karst breccia-residual vuggy type,solution-enhanced vuggy type,fractured-vuggy type,fractured type and matrix type(non-reservoir).Based on conventional logging data,core data and formation microscanner image(FMI)data of the Qilibei block,northeastern Sichuan Basin,the reservoirs are classified in accordance with fracture-vug matching relationship.Based on the principle of cluster analysis,K-Nearest Neighbor(KNN)classification templates are established,and the applicability of the model is verified by using the reservoir data from wells uninvolved in modeling.Following the analysis of the results of reservoir type discrimination and the production of corresponding reservoir intervals,the contributions of various reservoir types to production are evaluated and the reliability of reservoir type classification is verified.The results show that the solution-enhanced vuggy type is of high-quality sweet spot reservoir in the study area with good physical property and high gas production,followed by the fractured-vuggy type,and the fractured and karst breccia-residual vuggy types are the least promising.展开更多
The oolitic shoal reservoirs of the Lower Triassic Feixianguan Formation carbonates in the Sichuan Basin of southwest China are an important target for gas exploration in the basin.Their occurrence,like other cases wo...The oolitic shoal reservoirs of the Lower Triassic Feixianguan Formation carbonates in the Sichuan Basin of southwest China are an important target for gas exploration in the basin.Their occurrence,like other cases worldwide,can be divided into two locations in general,i.e.,platform interior and platform margin locations.Their differences of reservoir features and origins,however,have not been investigated comprehensively due to different exploration degrees.This issue is addressed in this paper,to provide basic data and information for the basin's hydrocarbon exploration and for the study of carbonate platform sedimentology and reservoir geology worldwide.We compared the features of these two types of reservoirs in detail,including the depositional and diagenetic features,pore types and petrophysical features.Based on the comparison,the origin of the reservoirs was further discussed.It is shown that the reservoirs in platform interior and platform margin locations differ significantly.The interior carbonates were deposited in moderate to high energy settings and the dominant lithologic type was limestone,which was weakly compacted and intensely cemented and has undergone meteoric dissolution.Pore types include intragranular dissolution and moldic pores,with low porosities(6%) and low permeabilities(0.1 mD).By contrast,the platform margin carbonates were deposited in relatively high energy settings and mainly consisted of dolostones with some limestones.The rocks were strongly compacted but incompletely cemented.As a result,some primary intergranular pores were preserved.Both meteoric solution and burial solution have taken place.There are various types of pore spaces including intergranular and intercrystalline solution pores and residual intergranular pores.This type of reservoir generally has better petrophysical properties(9% porosity and 0.1 mD permeability) and pore-throat structures than the interior reservoirs.These differences were influenced by both primary depositional features and secondary diagenesis.For the interior carbonate reservoirs,early meteoric dissolution,weak compaction and strong cementation are important controlling factors.By contrast,the factors controlling the formation of the margin carbonate reservoirs mainly include dolomitization,preservation of primary pores and burial dissolution.展开更多
The Lower Triassic Feixianguan Formation in the Daxian-Xuanhan region, northeastern Sicbuan is interpreted to be a carbonate platform intermediate between the West Hubei-East Cbongqing marine basin and Guangyuan-Wangc...The Lower Triassic Feixianguan Formation in the Daxian-Xuanhan region, northeastern Sicbuan is interpreted to be a carbonate platform intermediate between the West Hubei-East Cbongqing marine basin and Guangyuan-Wangcang marine basin. Outcrops, well logs and seismic data have disclosed that three sedimentary facies can be identified for the formation: open platform, platform exposed shoal and restricted platform facies. During the early stage of deposition of the Feixianguan Formation, there existed a sedimentary framework all the same as the Late Permian one: open platform in the west, and platform exposed shoal, restricted platform and open platform eastwards. The gradual increase of the shoal area permitted eastward migration of the shoal facies. During the deposition of the third member of the Feixianguan Formation, the study area was invaded by temporary transgressions. Till the deposition of the fourth member of the formation, the study area was prevailed over the unified restricted platform deposits, as indicated by the sedimentary model for the typical carbonate platform shoal deposits. The reservoir rocks in the Feixianguan Formation consist mostly of solution opening dolostone, and the rock types are assembled by oolitic dolostone, residual oolitic dolostone and sucrosic residual oolitic medium- to coarse-grained dolostone. The deep and shallow dual laterologs show relatively high resistivity, clear amplitude differences and time difference saltation of acoustic waves in some intervals. The seismic responses are indicated by low-frequency and highly variable amplitudes and chaotic reflection configurations. The reservoir rocks are characterized by high porosity-high permeability and medium porosity-medium permeability, showing a marked correlation between porosity and permeability. Solution openings are extremely developed in the reservoir rocks, including cast pores, intergranular solution openings, intercrystal pores, intercrystal solution openings, solution openings (caves) and minute fissures. Macropores and coarse pore throats are common. The reservoir rocks are apparently controlled by sedimentary facies in distribution patterns. Vertically, they occur dominantly in the second and first members of the Feixianguan Formation, and laterally in the platform exposed shoals and restricted platforms, where good natural gas potential is expected.展开更多
Numerous hydrocarbon accumulations are found in ramp crest shoals worldwide and therefore this depositional setting has a high potential of being the hydrocarbon reservoir. In this paper, we combined digital outcrop g...Numerous hydrocarbon accumulations are found in ramp crest shoals worldwide and therefore this depositional setting has a high potential of being the hydrocarbon reservoir. In this paper, we combined digital outcrop geology and traditional geological mapping to build an outcrop-based geocellular model of the ramp-crest shoal complex of the Lower Triassic Feixianguan Formation in the Eastern Sichuan Basin. The outcrop model serves as an analogue for the subsurface reservoir of the Feixianguan Formation and illustrates the complexity of the lithofacies types, stratigraphic architecture, and reservoir heterogeneities at a scale below conventional subsurface data resolution. The studied ramp -crest shoal complex consists of thirteen types of lithofacies that can be grouped into three facies-groups corresponding to subtidal intraclastic shoal, sub- to inter-tidal oolitic shoal, and tidal flat depositional environments respectively. The stratigraphic architecture of the shoal complex shows mostly a strong progradation of the high energy facies associated with an overall decrease of accommodation space associated with relative sea level still stand. Two reservoir facies associations have been recognized. The first one consists of supratidai dolomudstone and upper intertidal partially dolomitized oolitic packstone with anhydrite or nodules. These facies were deposited above the high energy oolitic grainstones and occurs as thin-bedded and laterally continuous layers, characterized by high porosity and low permeability. The second reservoir facies association is composed of intertidal crystalline dolomite and subtidal intraclastic bindstone that occurs stratigraphically below the oolitic grainstones. These deposits consist of massive laterally discontinuously beds, and are characterized by high porosity and high permeability. Both types of reservoir facies tend to be stacked vertically and migrated laterally with the progradation of the shoal complex. The construction of the outcrop-based 3D geological model provide a description and quantification of the facies distribution within a robust stratigraphic framework and the style and amount of reservoir heterogeneities associated with a ramp-crest shoal complex reservoir such as the one found in Lower Triassic Feixianguan Formation and Cambrian Longwangmiao Formation in Sichuan Basin or other ramp-crest reservoir worldwide.展开更多
A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolom...A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolomites is debatable, limiting the ability to characterize these reservoir successfully. Based on the investigation of the representative Dukouhe, Luojiazhai, and Puguang areas, this issue was addressed by examining the distribution, petrology, and geochemistry of the dolomites, the most comprehensive study to date was provided. Dolomitization occurred at a very early stage of diagenesis, as shown by the petrological features of the rock fabric. Vadose silt, which is composed primarily of dolomitic clasts, is found in the primary and secondary pores of the oolitic dolomite. This indicates that the overlying strata were subjected to dolomitization when the Feixianguan formation was located in the vadose zone. Therefore, it may be inferred that the dolomitization which occurred before the formation was exposed to meteoric conditions. The spatial distribution and geochemical characteristics of the dolomite indicate that dolomitization occurred as a result of seepage reflux. The degree of dolomitization decreases with increasing distance from the evaporative lagoon. Furthermore, the type and porosity of the dolomite vary in different zones of the upward-shoaling sequence, with the porosity gradually decreasing from the highest layer to the lowest layer. This reflects a close relationship between dolomitization and seawater evaporation during the formation of the dolomite. Geochemical analysis provided further evidence for the relationship between the dolomitization fluid and the coeval seawater. The 87Sr/86Sr and 813C isotopes, as well as the abundances of trace elements, Fe and Mn, indicate that seawater concentrated by evaporation acted as the dolomitization fluid. These results also show that dolomitization most likely occurred in a semi-closed diagenetic environment. Therefore, the main mechanism of oolitic dolomite formation is seepage reflux, which occurred at an early stage of diagenesis.展开更多
Based on comprehensive analyses of occurrence,petrological observation,pore structure and geochemistry,the different reservoir characteristics and reservoir evolutionary pathways between different oolitic shoal reserv...Based on comprehensive analyses of occurrence,petrological observation,pore structure and geochemistry,the different reservoir characteristics and reservoir evolutionary pathways between different oolitic shoal reservoir types of the Feixianguan Formation on the west side of the Kaijiang-Liangping Trough have been studied.There exist three stages of high-energy slope break belts in the Feixianguan period,the corresponding three stages of oolitic shoals gradually migrating in the direction of the trough.Three types of oolitic shoal reservoirs,namely,residual-oolitic dolomite,mold-oolitic dolomite and sparry oolitic limestone,were formed during sedimentary-diagenetic evolution,the pore types being intergranular dissolved pore,mold pore(or intragranular dissolved pore)and residual intergranular pore,respectively.The petrology,physical properties and pore structure of the different types of oolitic shoal reservoirs are quite different.Residual-oolitic dolomite reservoirs have the best quality,while sparry oolitic limestone reservoirs have the poorest.Combined with analyses of trace elements,rare earth elements and carbon-oxygen isotopes,it is suggested that the formation of residual-oolitic dolomite reservoirs is jointly controlled by penesaline seawater seepage-reflux dolomitization and hydrothermal dolomitization.Mold-pore oolitic dolomite reservoirs are controlled by penesaline seawater seepage-reflux dolomitization and meteoric water solution.The burial dissolution of organic acid not only further improves the reservoir qualities of previously formed oolitic dolomite reservoirs,but also preserves residual intergranular pores in the sparry oolitic limestone reservoirs.展开更多
The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the...The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the sequence stratigraphy and sedimentary facies of the Kaijiang-Liangping area are studied. Four sequence boundaries and three maximum flooding surfaces of the Feixianguan formation are detected in this area. Three third-order sequences are identified as first sequence (SQ1), the second sequence (SQ2), and the third sequence (SQ3) in which SQ1 corresponds to the member 1 of the Feixianguan formation, SQ2 corresponds to the member 2, and SQ3 corresponds to the member 3 and member 4. Member 1, 2, 3 and 4 are lithologic sections divided by predecessors. On the basis of this sequence division and their sedimentary marks, the facies of the Feixianguan formation can be divided into open platform and evaporate platform categories. The open platform is composed of three subfacies identified as platform bank or basin marginal bank, interbank, and platform basin. Thus, a sedimentary evolution model is established. According to the sedimentary and seismic characteristics of the Kaijiang-Liangping area, we determine that two oolitic bank models, the aggradation model and the progradation model, are developed in this area. The aggradation model is developed in the Longgang region, which includes the basin marginal bank as a favorable exploring zone. The progradation model is developed in the Jiulongshan and Longhui areas, besides the basin marginal bank, the favorable exploration zones also include the oolitic bank developing areas of the inner basin.展开更多
The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believ...The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believed to be formed mainly by burial dissolution and/or dolomitization on the basis of primary intergranular pores. In this study, through a comprehensive geological study on the whole basin, the dissolution and dolomitization are suggested not to be the fundamental factor of reservoir formation and there thus may be a possible new fundamental mechanism-the preservation of primary intergranular pores, i.e., the retention diagenesis. Based on this, a complex and multi-stage reservoir evolution and formation model is proposed. In the model, the depositional environment is the basis of reservoir initial formation. Subsequently, early compaction and shallow burial cementation result in the primary reservoir differentiation. Then, multi-stage burial dissolution alters and adjusts the reservoir. Because the last stage gaseous hydrocarbons have little diagenetic impact, the reservoir is formed finally. Therefore, this study presents a possible new fundamental mechanism and evolution model for the reservoir formation. The results can be applied in the regional reservoir predication and shaping exploration strategies, and provide reference for the study of shoal reservoirs in other areas.展开更多
The Lower Triassic Feixianguan Formation at the well-known Puguang gasfield in the northeastern Sichuan Basin of southwest China produces a representa- tive oolitic reservoir, which has been the biggest marinesourced ...The Lower Triassic Feixianguan Formation at the well-known Puguang gasfield in the northeastern Sichuan Basin of southwest China produces a representa- tive oolitic reservoir, which has been the biggest marinesourced gasfield so far in China (discovered in 2003 with proven gas reserves greater than 350× 10^8 m3). This study combines core, thin section, and scanning electron microscopy observations, and geochemical analysis (C, O, and Sr isotopes) in order to investigate the basic characteristics and formation mechanisms of the reservoir. Observations indicate that platform margin oolitic dolomites are the most important reservoir rocks. Porosity is dominated by intergranular and intragranular solution, and moldic pore. The dolomites are characterized by medium porosity and permeability, averaging at approximately 9% and 29.7 mD, respectively. ^87Sr/^86Sr (0.707536-0.707934) and δ^13CpDB (1.8 ‰--3.5 ‰) isotopic values indicate that the dolomitization fluid is predominantly concentrated seawater by evaporation, and the main mechanism for the oolitic dolomite formation is seepage reflux at an early stage of eodiagenesis. Both sedimentation and diagenesis (e.g., dolomitization and dissolution) have led to the formation of high-quality rocks to different degrees. Dolomite formation may have little contribution, karst may have had both positive and negative influences, and burial dissolution-TSR (thermochemical sulfate reduction) may not impact widely. The preservation of primary intergranular pores and dissolution by meteoric or mixed waters at the early stage of eogenesis are the main influences. This study may assist oil and gas explorationactivities in the Puguang area and in other areas withdolomitic reservoirs.展开更多
The discovery of natural gas reservoirs from the Triassic Feixianguan Formation in the Northeastern Sichuan Basin is an important breakthrough in the field of marine carbonate rocks for Chinese oil and gas exploration...The discovery of natural gas reservoirs from the Triassic Feixianguan Formation in the Northeastern Sichuan Basin is an important breakthrough in the field of marine carbonate rocks for Chinese oil and gas exploration in recent years.Because of the dolomite-hosted reservoirs in the Feixianguan Formation,these dolomites and their formation mechanisms have been a research focus for sedimentary geologists and petroleum geologists.Based on the homogenization temperatures of fluid inclusions,oxygen isotopic composition and their calculated temperatures,and the burial and thermal history of the typical well,it is considered that the majority of dolomites are formed by low-temperature dolomitizing fluids in the Triassic Feixianguan Formation,Northeastern Sichuan Basin.Only a minority of dolomites are formed by high-temperature dolomitizing fluids.The ending depth interval of low-temperature dolomitizing fluids was about 1000-2500 m,of which the correspondingly ending timing interval was approximately from early-middle Middle Triassic to early-middle Late Triassic.The main depth interval of high-temperature dolomitizing fluids was about 3200-4500 m,of which the correspondingly main timing interval was approximately early-middle Middle Jurassic.The low-temperature and high-temperature dolomitizing fluids have different meanings to the formation and evolution of the pore volumes of dolomite reservoirs in the Feixianguan Formation,Northeastern Sichuan Basin.展开更多
The oolitic shoals of the Triassic carbonate platform margin in the Yudongzi (鱼洞子) outcrop of Erlangmiao (二郎庙) area in the northwestern Sichuan (四川) basin present a scarce opportunity to quantitatively d...The oolitic shoals of the Triassic carbonate platform margin in the Yudongzi (鱼洞子) outcrop of Erlangmiao (二郎庙) area in the northwestern Sichuan (四川) basin present a scarce opportunity to quantitatively describe their diagenesis and its effects on the acoustic velocity. Using a detailed field geologic survey, profiles illustration of typical depositional system, and systematic testing, five types of diagenesis have been identified in the oolitic shoals: micritization, cementation, compaction and pressolution, dissolution, and dolomitisation. The cementation is composed of four subtypes (micrite cements, fibrous calcite cements, granular calcite cements, and blocky calcite cements). The dissolution is formed from three subtypes (freshwater selective dissolution, burial non-selective dissolution, and burial selective dissolution). The dolomitisation is composed of three subtypes (fine-crystalline dolomites, microcrystalline dolomites, and medium-crystalline dolomites). In order to quantitatively describe the diagenetic fabric of oolitic shoals, the micritic grain content, calcite cement content, mean pore diameter, pore types, dolomite content, and dolomite types have been evaluated. Based on these data, the relationship between the acoustic velocity and diagenesis of oolitic shoals hasbeen established. The results show that the diagenetic fabric is linearly related with the acoustic velocity, and the general trend observed is as expected a decrease of velocity as the micritic grain content, mean pore diameter and dolomite content increase, or the sparite cement content decreases. This study will demonstrate that the transformation of diagenetic facies will probably make the petrophysicai properties ofEffects of Diagenesis on the Acoustic Velocity of the Triassic Oolitic Shoals in the Yudongzi Outcropthe oolitic shoals regularly changed. The reflection configuration of diagenetic facies in the oolitic shoals can be shown in the synthetic seismic model simulated according to the P-wave impedance and S-wave impedance.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41972109)the Chengdu University of Technology Postgraduate Innovative Cultivation Program(CDUT2022BJCX004).
文摘There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Feixianguan Formation and thus hampers natural gas exploration in the region,so further study is urgently required.Using experimental tests of natural gas composition,stable isotopes,and noble gas isotopes with gas chromatography(GC)and mass spectrometry(MS)studies of source rock and reservoir asphalt saturated hydrocarbons,the natural gas geochemical characteristics,the genetic identification and a gas-source comparison of the Feixianguan Formation were studied.Then,con-strained by the thermal history,the histories of gas generation and expulsion were restored by basin simulation technology.Finally,a gas accumulation model was established for the Feixianguan Formation.The results showed that(1)the H_(2)S-rich and H2S-poor gas reservoirs of the Feixianguan Formation are distributed on the east and west sides of the Kaijiang-Liangping trough in the Eastern Sichuan Basin,respectively.The carbon and hydrogen isotope compositions of the natural gas in the gas reservoirs are generally heavy and have typical characteristics of high-maturity dry gas reservoirs.(2)The natural gas of the Feixianguan Formation is organic thermogenic gas,which is mainly oil-type gas generated by the secondary cracking of crude oil.The gas-generating parent material is mainly type II kerogen.(3)The natural gas of the Feixianguan Formation in the Eastern Sichuan Basin was mainly generated by argil-laceous source rocks of the Upper Permian Longtan Formation.(4)Natural gas accumulation occurred as follows:the paleo-structure heights were filled with crude oil in the Early Jurassic,and paleo-oil res-ervoirs were formed in the Feixianguan Formation;during the Middle-Late Jurassic,the paleo-oil res-ervoirs were cracked when the reservoir temperatures rose above 160 C,and paleo-gas reservoirs were formed.Since the end of the Late Jurassic,the paleo-gas reservoirs have been adjusted and reformed to form the present-day natural gas reservoirs.These results provide a basis for studying natural gas accumulation dynamics of the Feixianguan Formation in the Eastern Sichuan Basin.
文摘The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and fractures of different genetic mechanisms and scales are often developed in association,and it is difficult to classify reservoir types merely based on static data such as outcrop observation,and cores and logging data.In the study,the reservoirs in the Feixianguan Formation are grouped into five types by combining dynamic and static data,that is,karst breccia-residual vuggy type,solution-enhanced vuggy type,fractured-vuggy type,fractured type and matrix type(non-reservoir).Based on conventional logging data,core data and formation microscanner image(FMI)data of the Qilibei block,northeastern Sichuan Basin,the reservoirs are classified in accordance with fracture-vug matching relationship.Based on the principle of cluster analysis,K-Nearest Neighbor(KNN)classification templates are established,and the applicability of the model is verified by using the reservoir data from wells uninvolved in modeling.Following the analysis of the results of reservoir type discrimination and the production of corresponding reservoir intervals,the contributions of various reservoir types to production are evaluated and the reliability of reservoir type classification is verified.The results show that the solution-enhanced vuggy type is of high-quality sweet spot reservoir in the study area with good physical property and high gas production,followed by the fractured-vuggy type,and the fractured and karst breccia-residual vuggy types are the least promising.
基金funded by the National Basic Research Development Program(973 project, Grant No. 2012CB214803)PetroChina Youth Innovation Foundation (Grant No. 2011D-5006-0105)Key Subject Construction Project of Sichuan Province, China(Grant No. SZD 0414)
文摘The oolitic shoal reservoirs of the Lower Triassic Feixianguan Formation carbonates in the Sichuan Basin of southwest China are an important target for gas exploration in the basin.Their occurrence,like other cases worldwide,can be divided into two locations in general,i.e.,platform interior and platform margin locations.Their differences of reservoir features and origins,however,have not been investigated comprehensively due to different exploration degrees.This issue is addressed in this paper,to provide basic data and information for the basin's hydrocarbon exploration and for the study of carbonate platform sedimentology and reservoir geology worldwide.We compared the features of these two types of reservoirs in detail,including the depositional and diagenetic features,pore types and petrophysical features.Based on the comparison,the origin of the reservoirs was further discussed.It is shown that the reservoirs in platform interior and platform margin locations differ significantly.The interior carbonates were deposited in moderate to high energy settings and the dominant lithologic type was limestone,which was weakly compacted and intensely cemented and has undergone meteoric dissolution.Pore types include intragranular dissolution and moldic pores,with low porosities(6%) and low permeabilities(0.1 mD).By contrast,the platform margin carbonates were deposited in relatively high energy settings and mainly consisted of dolostones with some limestones.The rocks were strongly compacted but incompletely cemented.As a result,some primary intergranular pores were preserved.Both meteoric solution and burial solution have taken place.There are various types of pore spaces including intergranular and intercrystalline solution pores and residual intergranular pores.This type of reservoir generally has better petrophysical properties(9% porosity and 0.1 mD permeability) and pore-throat structures than the interior reservoirs.These differences were influenced by both primary depositional features and secondary diagenesis.For the interior carbonate reservoirs,early meteoric dissolution,weak compaction and strong cementation are important controlling factors.By contrast,the factors controlling the formation of the margin carbonate reservoirs mainly include dolomitization,preservation of primary pores and burial dissolution.
文摘The Lower Triassic Feixianguan Formation in the Daxian-Xuanhan region, northeastern Sicbuan is interpreted to be a carbonate platform intermediate between the West Hubei-East Cbongqing marine basin and Guangyuan-Wangcang marine basin. Outcrops, well logs and seismic data have disclosed that three sedimentary facies can be identified for the formation: open platform, platform exposed shoal and restricted platform facies. During the early stage of deposition of the Feixianguan Formation, there existed a sedimentary framework all the same as the Late Permian one: open platform in the west, and platform exposed shoal, restricted platform and open platform eastwards. The gradual increase of the shoal area permitted eastward migration of the shoal facies. During the deposition of the third member of the Feixianguan Formation, the study area was invaded by temporary transgressions. Till the deposition of the fourth member of the formation, the study area was prevailed over the unified restricted platform deposits, as indicated by the sedimentary model for the typical carbonate platform shoal deposits. The reservoir rocks in the Feixianguan Formation consist mostly of solution opening dolostone, and the rock types are assembled by oolitic dolostone, residual oolitic dolostone and sucrosic residual oolitic medium- to coarse-grained dolostone. The deep and shallow dual laterologs show relatively high resistivity, clear amplitude differences and time difference saltation of acoustic waves in some intervals. The seismic responses are indicated by low-frequency and highly variable amplitudes and chaotic reflection configurations. The reservoir rocks are characterized by high porosity-high permeability and medium porosity-medium permeability, showing a marked correlation between porosity and permeability. Solution openings are extremely developed in the reservoir rocks, including cast pores, intergranular solution openings, intercrystal pores, intercrystal solution openings, solution openings (caves) and minute fissures. Macropores and coarse pore throats are common. The reservoir rocks are apparently controlled by sedimentary facies in distribution patterns. Vertically, they occur dominantly in the second and first members of the Feixianguan Formation, and laterally in the platform exposed shoals and restricted platforms, where good natural gas potential is expected.
基金supported by grants from the National Key Oil and Gas Program of China(No.2016ZX05004002)from Special Program of PetroChina(No.2014E-32-02)
文摘Numerous hydrocarbon accumulations are found in ramp crest shoals worldwide and therefore this depositional setting has a high potential of being the hydrocarbon reservoir. In this paper, we combined digital outcrop geology and traditional geological mapping to build an outcrop-based geocellular model of the ramp-crest shoal complex of the Lower Triassic Feixianguan Formation in the Eastern Sichuan Basin. The outcrop model serves as an analogue for the subsurface reservoir of the Feixianguan Formation and illustrates the complexity of the lithofacies types, stratigraphic architecture, and reservoir heterogeneities at a scale below conventional subsurface data resolution. The studied ramp -crest shoal complex consists of thirteen types of lithofacies that can be grouped into three facies-groups corresponding to subtidal intraclastic shoal, sub- to inter-tidal oolitic shoal, and tidal flat depositional environments respectively. The stratigraphic architecture of the shoal complex shows mostly a strong progradation of the high energy facies associated with an overall decrease of accommodation space associated with relative sea level still stand. Two reservoir facies associations have been recognized. The first one consists of supratidai dolomudstone and upper intertidal partially dolomitized oolitic packstone with anhydrite or nodules. These facies were deposited above the high energy oolitic grainstones and occurs as thin-bedded and laterally continuous layers, characterized by high porosity and low permeability. The second reservoir facies association is composed of intertidal crystalline dolomite and subtidal intraclastic bindstone that occurs stratigraphically below the oolitic grainstones. These deposits consist of massive laterally discontinuously beds, and are characterized by high porosity and high permeability. Both types of reservoir facies tend to be stacked vertically and migrated laterally with the progradation of the shoal complex. The construction of the outcrop-based 3D geological model provide a description and quantification of the facies distribution within a robust stratigraphic framework and the style and amount of reservoir heterogeneities associated with a ramp-crest shoal complex reservoir such as the one found in Lower Triassic Feixianguan Formation and Cambrian Longwangmiao Formation in Sichuan Basin or other ramp-crest reservoir worldwide.
基金Project(2012CB214803)supported by the Major State Basic Research Development Program,ChinaProject(2011ZX5017-001-HZO2)supported by the National Science & Technology Special Project,China+1 种基金Project(2011D-5006-0105)supported by the PetroChina Research Fund,ChinaProject(SZD0414)supported by the Key Subject Construction Project of Sichuan Province,China
文摘A series of marine natural gas fields were recently discovered in oolitic dolomites of the Lower Triassic Feixianguan formation, northeastern Sichuan Basin, southwest China. The mechanism forming these reservoir dolomites is debatable, limiting the ability to characterize these reservoir successfully. Based on the investigation of the representative Dukouhe, Luojiazhai, and Puguang areas, this issue was addressed by examining the distribution, petrology, and geochemistry of the dolomites, the most comprehensive study to date was provided. Dolomitization occurred at a very early stage of diagenesis, as shown by the petrological features of the rock fabric. Vadose silt, which is composed primarily of dolomitic clasts, is found in the primary and secondary pores of the oolitic dolomite. This indicates that the overlying strata were subjected to dolomitization when the Feixianguan formation was located in the vadose zone. Therefore, it may be inferred that the dolomitization which occurred before the formation was exposed to meteoric conditions. The spatial distribution and geochemical characteristics of the dolomite indicate that dolomitization occurred as a result of seepage reflux. The degree of dolomitization decreases with increasing distance from the evaporative lagoon. Furthermore, the type and porosity of the dolomite vary in different zones of the upward-shoaling sequence, with the porosity gradually decreasing from the highest layer to the lowest layer. This reflects a close relationship between dolomitization and seawater evaporation during the formation of the dolomite. Geochemical analysis provided further evidence for the relationship between the dolomitization fluid and the coeval seawater. The 87Sr/86Sr and 813C isotopes, as well as the abundances of trace elements, Fe and Mn, indicate that seawater concentrated by evaporation acted as the dolomitization fluid. These results also show that dolomitization most likely occurred in a semi-closed diagenetic environment. Therefore, the main mechanism of oolitic dolomite formation is seepage reflux, which occurred at an early stage of diagenesis.
基金This research was supported jointly by the National Natural Science Foundation of China(Grant No.41972165)National Science and Technology Major Project(Grant No.2017ZX05008-004-008)National Science and Technology Major Project(Grant No.2016E-0607).
文摘Based on comprehensive analyses of occurrence,petrological observation,pore structure and geochemistry,the different reservoir characteristics and reservoir evolutionary pathways between different oolitic shoal reservoir types of the Feixianguan Formation on the west side of the Kaijiang-Liangping Trough have been studied.There exist three stages of high-energy slope break belts in the Feixianguan period,the corresponding three stages of oolitic shoals gradually migrating in the direction of the trough.Three types of oolitic shoal reservoirs,namely,residual-oolitic dolomite,mold-oolitic dolomite and sparry oolitic limestone,were formed during sedimentary-diagenetic evolution,the pore types being intergranular dissolved pore,mold pore(or intragranular dissolved pore)and residual intergranular pore,respectively.The petrology,physical properties and pore structure of the different types of oolitic shoal reservoirs are quite different.Residual-oolitic dolomite reservoirs have the best quality,while sparry oolitic limestone reservoirs have the poorest.Combined with analyses of trace elements,rare earth elements and carbon-oxygen isotopes,it is suggested that the formation of residual-oolitic dolomite reservoirs is jointly controlled by penesaline seawater seepage-reflux dolomitization and hydrothermal dolomitization.Mold-pore oolitic dolomite reservoirs are controlled by penesaline seawater seepage-reflux dolomitization and meteoric water solution.The burial dissolution of organic acid not only further improves the reservoir qualities of previously formed oolitic dolomite reservoirs,but also preserves residual intergranular pores in the sparry oolitic limestone reservoirs.
文摘The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the sequence stratigraphy and sedimentary facies of the Kaijiang-Liangping area are studied. Four sequence boundaries and three maximum flooding surfaces of the Feixianguan formation are detected in this area. Three third-order sequences are identified as first sequence (SQ1), the second sequence (SQ2), and the third sequence (SQ3) in which SQ1 corresponds to the member 1 of the Feixianguan formation, SQ2 corresponds to the member 2, and SQ3 corresponds to the member 3 and member 4. Member 1, 2, 3 and 4 are lithologic sections divided by predecessors. On the basis of this sequence division and their sedimentary marks, the facies of the Feixianguan formation can be divided into open platform and evaporate platform categories. The open platform is composed of three subfacies identified as platform bank or basin marginal bank, interbank, and platform basin. Thus, a sedimentary evolution model is established. According to the sedimentary and seismic characteristics of the Kaijiang-Liangping area, we determine that two oolitic bank models, the aggradation model and the progradation model, are developed in this area. The aggradation model is developed in the Longgang region, which includes the basin marginal bank as a favorable exploring zone. The progradation model is developed in the Jiulongshan and Longhui areas, besides the basin marginal bank, the favorable exploration zones also include the oolitic bank developing areas of the inner basin.
基金supported by the PetroChina Youth Innovation Foundation (No. 06E1018)Key Subject Construction Project of Sichuan Province (No. SZD0414)
文摘The Lower Triassic Feixianguan (飞仙关) Formation oolitic shoal reservoir in the Sichuan (四川) basin (Southwest China) is currently an exploration and research highlight in China. The reservoir is widely believed to be formed mainly by burial dissolution and/or dolomitization on the basis of primary intergranular pores. In this study, through a comprehensive geological study on the whole basin, the dissolution and dolomitization are suggested not to be the fundamental factor of reservoir formation and there thus may be a possible new fundamental mechanism-the preservation of primary intergranular pores, i.e., the retention diagenesis. Based on this, a complex and multi-stage reservoir evolution and formation model is proposed. In the model, the depositional environment is the basis of reservoir initial formation. Subsequently, early compaction and shallow burial cementation result in the primary reservoir differentiation. Then, multi-stage burial dissolution alters and adjusts the reservoir. Because the last stage gaseous hydrocarbons have little diagenetic impact, the reservoir is formed finally. Therefore, this study presents a possible new fundamental mechanism and evolution model for the reservoir formation. The results can be applied in the regional reservoir predication and shaping exploration strategies, and provide reference for the study of shoal reservoirs in other areas.
文摘The Lower Triassic Feixianguan Formation at the well-known Puguang gasfield in the northeastern Sichuan Basin of southwest China produces a representa- tive oolitic reservoir, which has been the biggest marinesourced gasfield so far in China (discovered in 2003 with proven gas reserves greater than 350× 10^8 m3). This study combines core, thin section, and scanning electron microscopy observations, and geochemical analysis (C, O, and Sr isotopes) in order to investigate the basic characteristics and formation mechanisms of the reservoir. Observations indicate that platform margin oolitic dolomites are the most important reservoir rocks. Porosity is dominated by intergranular and intragranular solution, and moldic pore. The dolomites are characterized by medium porosity and permeability, averaging at approximately 9% and 29.7 mD, respectively. ^87Sr/^86Sr (0.707536-0.707934) and δ^13CpDB (1.8 ‰--3.5 ‰) isotopic values indicate that the dolomitization fluid is predominantly concentrated seawater by evaporation, and the main mechanism for the oolitic dolomite formation is seepage reflux at an early stage of eodiagenesis. Both sedimentation and diagenesis (e.g., dolomitization and dissolution) have led to the formation of high-quality rocks to different degrees. Dolomite formation may have little contribution, karst may have had both positive and negative influences, and burial dissolution-TSR (thermochemical sulfate reduction) may not impact widely. The preservation of primary intergranular pores and dissolution by meteoric or mixed waters at the early stage of eogenesis are the main influences. This study may assist oil and gas explorationactivities in the Puguang area and in other areas withdolomitic reservoirs.
基金supported by National Natural Science Foundation of China(Grant Nos. 40839908 and 40672072)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20050616005)
文摘The discovery of natural gas reservoirs from the Triassic Feixianguan Formation in the Northeastern Sichuan Basin is an important breakthrough in the field of marine carbonate rocks for Chinese oil and gas exploration in recent years.Because of the dolomite-hosted reservoirs in the Feixianguan Formation,these dolomites and their formation mechanisms have been a research focus for sedimentary geologists and petroleum geologists.Based on the homogenization temperatures of fluid inclusions,oxygen isotopic composition and their calculated temperatures,and the burial and thermal history of the typical well,it is considered that the majority of dolomites are formed by low-temperature dolomitizing fluids in the Triassic Feixianguan Formation,Northeastern Sichuan Basin.Only a minority of dolomites are formed by high-temperature dolomitizing fluids.The ending depth interval of low-temperature dolomitizing fluids was about 1000-2500 m,of which the correspondingly ending timing interval was approximately from early-middle Middle Triassic to early-middle Late Triassic.The main depth interval of high-temperature dolomitizing fluids was about 3200-4500 m,of which the correspondingly main timing interval was approximately early-middle Middle Jurassic.The low-temperature and high-temperature dolomitizing fluids have different meanings to the formation and evolution of the pore volumes of dolomite reservoirs in the Feixianguan Formation,Northeastern Sichuan Basin.
基金supported by the SINOPEC Forward Looking Project of China (No. YPH08114)
文摘The oolitic shoals of the Triassic carbonate platform margin in the Yudongzi (鱼洞子) outcrop of Erlangmiao (二郎庙) area in the northwestern Sichuan (四川) basin present a scarce opportunity to quantitatively describe their diagenesis and its effects on the acoustic velocity. Using a detailed field geologic survey, profiles illustration of typical depositional system, and systematic testing, five types of diagenesis have been identified in the oolitic shoals: micritization, cementation, compaction and pressolution, dissolution, and dolomitisation. The cementation is composed of four subtypes (micrite cements, fibrous calcite cements, granular calcite cements, and blocky calcite cements). The dissolution is formed from three subtypes (freshwater selective dissolution, burial non-selective dissolution, and burial selective dissolution). The dolomitisation is composed of three subtypes (fine-crystalline dolomites, microcrystalline dolomites, and medium-crystalline dolomites). In order to quantitatively describe the diagenetic fabric of oolitic shoals, the micritic grain content, calcite cement content, mean pore diameter, pore types, dolomite content, and dolomite types have been evaluated. Based on these data, the relationship between the acoustic velocity and diagenesis of oolitic shoals hasbeen established. The results show that the diagenetic fabric is linearly related with the acoustic velocity, and the general trend observed is as expected a decrease of velocity as the micritic grain content, mean pore diameter and dolomite content increase, or the sparite cement content decreases. This study will demonstrate that the transformation of diagenetic facies will probably make the petrophysicai properties ofEffects of Diagenesis on the Acoustic Velocity of the Triassic Oolitic Shoals in the Yudongzi Outcropthe oolitic shoals regularly changed. The reflection configuration of diagenetic facies in the oolitic shoals can be shown in the synthetic seismic model simulated according to the P-wave impedance and S-wave impedance.