To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
Clastic rock reservoirs in petroliferous basins are generally rich in feldspars. Feldspar dissolution has developed widely in clastic reservoirs, and the resulting secondary pores are crucial in deeply buried reservoi...Clastic rock reservoirs in petroliferous basins are generally rich in feldspars. Feldspar dissolution has developed widely in clastic reservoirs, and the resulting secondary pores are crucial in deeply buried reservoirs. Based on a study of the diagenesis of clastic reservoirs in the Bohai Bay Basin, Tarim Basin, and Pearl River Mouth Basin and physical and numerical simulation experiments of fluid-rock interactions, this paper proposed a successive formation model of secondary pores via feldspar dissolution in deeply buried clastic reservoirs, considering the global research progresses in feldspar dissolution in clastic rocks. Feldspar dissolution can occur from shallow open systems to deep-ultra deep closed systems in petroliferous basins, resulting in the successive formation of secondary pores at different diagenetic stages. The successive mechanism includes three aspects. The first aspect is the succession of corrosive fluids that dissolve minerals. Meteoric freshwater dominates at the Earth’s surface and the early diagenetic A stage. Subsequently, organic acids and COformed via kerogen maturation dominate at the early diagenetic B stage to the middle diagenetic stage. COand organic acids formed via hydrocarbon oxidation in hydrocarbon reservoirs dominate at the middle diagenetic B stage to the late diagenetic stage. The second aspect is the successive formation processes of secondary pores via feldspar dissolution. Large-scale feldspar secondary pores identified in deep reservoirs include secondary pores formed at shallow-medium depths that are subsequently preserved into deep layers, as well as secondary pores formed at deep depths. Existing secondary pores in deeply buried reservoirs are the superposition of successively feldspar dissolution caused by different acids at different stages. The third aspect is a successive change in the feldspar alteration pathways and porosity enhancement/preservation effect. Open to semi-open diagenetic systems are developed from the Earth’s surface to the early diagenetic stage, and feldspar dissolution forms enhanced secondary pores. Nearly closed to closed diagenetic systems develop in the middle to late diagenetic stages, and feldspar dissolution forms redistributional secondary pores. The associated cementation causes compression resistance of the rock, which is favorable for the preservation of secondary pores in deep layers. These new insights extend the formation window of secondary pores in petroliferous basins from the traditional acid-oil generation window to a high-temperature gas generation window after hydrocarbon charging. The proposed model explains the genesis of deep-ultra deep high-quality reservoirs with low-permeability, medium-porosity and dominating feldspar secondary pores, which is significant for hydrocarbon exploration in deep to ultra-deep layers.展开更多
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41872140, 41821002, 41911530189)the National Major Science and Technology Special Grant (Grant No. 2016ZX05006-007)+2 种基金the Special Fund for Taishan Scholar Project (Grant No. tsqn201909061)the Fundamental Research Funds for the Central Universities (Grant No. 20CX06067A)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (Grant No. 2021QNLM020001)。
文摘Clastic rock reservoirs in petroliferous basins are generally rich in feldspars. Feldspar dissolution has developed widely in clastic reservoirs, and the resulting secondary pores are crucial in deeply buried reservoirs. Based on a study of the diagenesis of clastic reservoirs in the Bohai Bay Basin, Tarim Basin, and Pearl River Mouth Basin and physical and numerical simulation experiments of fluid-rock interactions, this paper proposed a successive formation model of secondary pores via feldspar dissolution in deeply buried clastic reservoirs, considering the global research progresses in feldspar dissolution in clastic rocks. Feldspar dissolution can occur from shallow open systems to deep-ultra deep closed systems in petroliferous basins, resulting in the successive formation of secondary pores at different diagenetic stages. The successive mechanism includes three aspects. The first aspect is the succession of corrosive fluids that dissolve minerals. Meteoric freshwater dominates at the Earth’s surface and the early diagenetic A stage. Subsequently, organic acids and COformed via kerogen maturation dominate at the early diagenetic B stage to the middle diagenetic stage. COand organic acids formed via hydrocarbon oxidation in hydrocarbon reservoirs dominate at the middle diagenetic B stage to the late diagenetic stage. The second aspect is the successive formation processes of secondary pores via feldspar dissolution. Large-scale feldspar secondary pores identified in deep reservoirs include secondary pores formed at shallow-medium depths that are subsequently preserved into deep layers, as well as secondary pores formed at deep depths. Existing secondary pores in deeply buried reservoirs are the superposition of successively feldspar dissolution caused by different acids at different stages. The third aspect is a successive change in the feldspar alteration pathways and porosity enhancement/preservation effect. Open to semi-open diagenetic systems are developed from the Earth’s surface to the early diagenetic stage, and feldspar dissolution forms enhanced secondary pores. Nearly closed to closed diagenetic systems develop in the middle to late diagenetic stages, and feldspar dissolution forms redistributional secondary pores. The associated cementation causes compression resistance of the rock, which is favorable for the preservation of secondary pores in deep layers. These new insights extend the formation window of secondary pores in petroliferous basins from the traditional acid-oil generation window to a high-temperature gas generation window after hydrocarbon charging. The proposed model explains the genesis of deep-ultra deep high-quality reservoirs with low-permeability, medium-porosity and dominating feldspar secondary pores, which is significant for hydrocarbon exploration in deep to ultra-deep layers.