Aiming at the parameter detection of the circumferential equispaced curves,and on the background of the rifling parameter detection, a panoramic image based detectiontechnique is proposed, which employs the panoramic ...Aiming at the parameter detection of the circumferential equispaced curves,and on the background of the rifling parameter detection, a panoramic image based detectiontechnique is proposed, which employs the panoramic image photographed by a tamper reflector and aCCD camera to detect the parameter of the circumferential equispaced curves. The effect of thesystem's off-center error, deflection error and pixel error on the parameter detection is analyzed,which shows that this technique make a good use of the property of the circumferential equispaced,and has a high power of anti off-center error and anti deflection error, resulting a high precisionat the parameter measurement on circumferential equispaced curves.展开更多
Deep neural networks perform well in image recognition,object recognition,pattern analysis,and speech recog-nition.In military applications,deep neural networks can detect equipment and recognize objects.In military e...Deep neural networks perform well in image recognition,object recognition,pattern analysis,and speech recog-nition.In military applications,deep neural networks can detect equipment and recognize objects.In military equipment,it is necessary to detect and recognize rifle management,which is an important piece of equipment,using deep neural networks.There have been no previous studies on the detection of real rifle numbers using real rifle image datasets.In this study,we propose a method for detecting and recognizing rifle numbers when rifle image data are insufficient.The proposed method was designed to improve the recognition rate of a specific dataset using data fusion and transfer learningmethods.In the proposed method,real rifle images and existing digit images are fusedas trainingdata,andthe final layer is transferredto theYolov5 algorithmmodel.The detectionand recognition performance of rifle numbers was improved and analyzed using rifle image and numerical datasets.We used actual rifle image data(K-2 rifle)and numeric image datasets,as an experimental environment.TensorFlow was used as the machine learning library.Experimental results show that the proposed method maintains 84.42% accuracy,73.54% precision,81.81% recall,and 77.46% F1-score in detecting and recognizing rifle numbers.The proposed method is effective in detecting rifle numbers.展开更多
目的评价并比较序贯性脏器衰竭评分(sequential organ failure assessment,SOFA)、急性生理学与慢性健康状况评分(acute physiology and chronic health evaluation,APACHE)Ⅱ、简明急性生理学评分(simplified acute physiology score,S...目的评价并比较序贯性脏器衰竭评分(sequential organ failure assessment,SOFA)、急性生理学与慢性健康状况评分(acute physiology and chronic health evaluation,APACHE)Ⅱ、简明急性生理学评分(simplified acute physiology score,SAPS)Ⅱ和Liano评分4种危重病评分系统及RIFLE标准对急性肾损伤(acute kidney injury,AKI)患者的预后评估价值。方法本研究为前瞻性、单中心研究,收集2008年12月到2009年11月复旦大学附属华山医院各种病因引起的AKI患者。AKI的诊断标准为RIFLE的肌酐标准,除外肾后性、肾小球性、肾血管性和间质性肾炎等引起的急性损伤。研究的主要终点是28d死亡率。比较存活组和死亡组的RIFLE分级、SOFA、APACHEⅡ、SAPSⅡ和Liano评分,并进行各种评分系统对死亡的ROC曲线分析,同时将4种评分方法根据RIFLE分级进行分层分析。结果共入选194例符合入选标准的AKI患者。存活组和死亡组的RIFLE分级、AKI病因、是否需要透析差异无统计学意义(P>0.05)。死亡组的机械通气比例、SOFA、APACHEⅡ、SAPSⅡ和Liano评分显著高于存活组(P<0.001)。SOFA、APACHEⅡ、SAPSⅡ和Liano评分预测死亡的受试者工作特性(ROC)曲线下面积分别为0.900、0.885、0.888、0.875(均P<0.001),而RIFLE的ROC曲线下面积为0.566(P>0.05)。按AKI的RIFLE级别进行分层分析时发现,4个评分方法在衰竭组(Fc)ROC曲线下面积最大,其中又以Liano评分最高。结论 RIFLE分级对AKI患者的预后无明显的判断价值,而危重病评分包括SOFA、APACHEⅡ、SAPSⅡ和Liano评分对AKI的预后具有良好的预测价值。展开更多
A rifle in a soldier’s system is often equipped with a grenade launcher,aiming device,etc.,which increases the weight of the rifle and changes its center of gravity.This study explores how the rifle weight,weight dis...A rifle in a soldier’s system is often equipped with a grenade launcher,aiming device,etc.,which increases the weight of the rifle and changes its center of gravity.This study explores how the rifle weight,weight distribution and layout(e.g.stock length,position of grip and forestock)affect aiming comfort.In the paper,the upper extremity muscle activity was used to characterize the aiming comfort.A human-rifle musculoskeletal model was developed,which was validated by the surface electromyography(EMG)data.The results showed that the design parameters of rifle(weight,distance of gravity center to body and layout)had a significant influence on aiming comfort.The greater the weight was,the stronger the muscle activity was.With the distance increasing,first the muscle activity decreased,and then increased when the distance is exceeding a certain value.In addition,the combined influences of weight and distance illustrated that there was an optimal distance to make the slightest muscle movements for certain weight.For designing a rifle’s layout,more muscular exertions were required to maintain the holding posture with the stock length increasing,which was suggested to be in the range of 0.1 8 m to 0.2 7 m.Results can be used to optimize the ergonomics design of rifle,improving the comfort of the rifle aiming process and the shooting accuracy.展开更多
文摘Aiming at the parameter detection of the circumferential equispaced curves,and on the background of the rifling parameter detection, a panoramic image based detectiontechnique is proposed, which employs the panoramic image photographed by a tamper reflector and aCCD camera to detect the parameter of the circumferential equispaced curves. The effect of thesystem's off-center error, deflection error and pixel error on the parameter detection is analyzed,which shows that this technique make a good use of the property of the circumferential equispaced,and has a high power of anti off-center error and anti deflection error, resulting a high precisionat the parameter measurement on circumferential equispaced curves.
基金supported by the Future Strategy and Technology Research Institute(RN:23-AI-04)of Korea Military Academythe Hwarang-Dae Research Institute(RN:2023B1015)of Korea Military Academy,and Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1I1A1A01040308).
文摘Deep neural networks perform well in image recognition,object recognition,pattern analysis,and speech recog-nition.In military applications,deep neural networks can detect equipment and recognize objects.In military equipment,it is necessary to detect and recognize rifle management,which is an important piece of equipment,using deep neural networks.There have been no previous studies on the detection of real rifle numbers using real rifle image datasets.In this study,we propose a method for detecting and recognizing rifle numbers when rifle image data are insufficient.The proposed method was designed to improve the recognition rate of a specific dataset using data fusion and transfer learningmethods.In the proposed method,real rifle images and existing digit images are fusedas trainingdata,andthe final layer is transferredto theYolov5 algorithmmodel.The detectionand recognition performance of rifle numbers was improved and analyzed using rifle image and numerical datasets.We used actual rifle image data(K-2 rifle)and numeric image datasets,as an experimental environment.TensorFlow was used as the machine learning library.Experimental results show that the proposed method maintains 84.42% accuracy,73.54% precision,81.81% recall,and 77.46% F1-score in detecting and recognizing rifle numbers.The proposed method is effective in detecting rifle numbers.
文摘目的评价并比较序贯性脏器衰竭评分(sequential organ failure assessment,SOFA)、急性生理学与慢性健康状况评分(acute physiology and chronic health evaluation,APACHE)Ⅱ、简明急性生理学评分(simplified acute physiology score,SAPS)Ⅱ和Liano评分4种危重病评分系统及RIFLE标准对急性肾损伤(acute kidney injury,AKI)患者的预后评估价值。方法本研究为前瞻性、单中心研究,收集2008年12月到2009年11月复旦大学附属华山医院各种病因引起的AKI患者。AKI的诊断标准为RIFLE的肌酐标准,除外肾后性、肾小球性、肾血管性和间质性肾炎等引起的急性损伤。研究的主要终点是28d死亡率。比较存活组和死亡组的RIFLE分级、SOFA、APACHEⅡ、SAPSⅡ和Liano评分,并进行各种评分系统对死亡的ROC曲线分析,同时将4种评分方法根据RIFLE分级进行分层分析。结果共入选194例符合入选标准的AKI患者。存活组和死亡组的RIFLE分级、AKI病因、是否需要透析差异无统计学意义(P>0.05)。死亡组的机械通气比例、SOFA、APACHEⅡ、SAPSⅡ和Liano评分显著高于存活组(P<0.001)。SOFA、APACHEⅡ、SAPSⅡ和Liano评分预测死亡的受试者工作特性(ROC)曲线下面积分别为0.900、0.885、0.888、0.875(均P<0.001),而RIFLE的ROC曲线下面积为0.566(P>0.05)。按AKI的RIFLE级别进行分层分析时发现,4个评分方法在衰竭组(Fc)ROC曲线下面积最大,其中又以Liano评分最高。结论 RIFLE分级对AKI患者的预后无明显的判断价值,而危重病评分包括SOFA、APACHEⅡ、SAPSⅡ和Liano评分对AKI的预后具有良好的预测价值。
基金Supported by the National Natural Science Foundation of China(651575279)the Basic Research of National Defense of China(A1020133013)
文摘A rifle in a soldier’s system is often equipped with a grenade launcher,aiming device,etc.,which increases the weight of the rifle and changes its center of gravity.This study explores how the rifle weight,weight distribution and layout(e.g.stock length,position of grip and forestock)affect aiming comfort.In the paper,the upper extremity muscle activity was used to characterize the aiming comfort.A human-rifle musculoskeletal model was developed,which was validated by the surface electromyography(EMG)data.The results showed that the design parameters of rifle(weight,distance of gravity center to body and layout)had a significant influence on aiming comfort.The greater the weight was,the stronger the muscle activity was.With the distance increasing,first the muscle activity decreased,and then increased when the distance is exceeding a certain value.In addition,the combined influences of weight and distance illustrated that there was an optimal distance to make the slightest muscle movements for certain weight.For designing a rifle’s layout,more muscular exertions were required to maintain the holding posture with the stock length increasing,which was suggested to be in the range of 0.1 8 m to 0.2 7 m.Results can be used to optimize the ergonomics design of rifle,improving the comfort of the rifle aiming process and the shooting accuracy.