The Tongling ore cluster area experienced intensive compression and associated shearing during the Indosinian-Yanshanian Epoch, which formed a trunk ore-controlling fold and fault system in the caprock. The magmatic i...The Tongling ore cluster area experienced intensive compression and associated shearing during the Indosinian-Yanshanian Epoch, which formed a trunk ore-controlling fold and fault system in the caprock. The magmatic intrusion in the Yanshanian Epoch induced a multi-stage unmixing of poly-phase fluids, resulting in mineralization characterized by multi-layer, wide-range, and multiform styles. The magmatic intrusion in the Tongling area not only supplied the essential ore-forming materials, but also reconstructed the ore-controlling structures according to a trend surface simulation of the following five strata boundaries: Silurian-Devonian, Devonian-Carboniferous, Carboniferous- Permian, Middle Permian-Upper Permian and Permian -Triassic. The result of this simulation shows that there exists a significant difference between the strata in the upper part and those in the lower. The lower trend surfaces are antiform whereas the upper trend surfaces are synform. In addition, superposing of the trend surfaces of adjacent bed boundaries (such as, Silurian-Devonian boundary superposed upon Devonian-Carboniferous boundary) shows that the lower trend surface always pierces the one above. Moreover, the position and orientation of the pierced parts of the different superposed trend surfaces are similar and show E-W-trending zonal distribution in accordance with the distribution of the regional E-W-trending magmatic-metallogenic belt. Based on comprehensive analysis of the mechanical properties of the strata, structural deformation mechanisms, and field phenomena, it seems that the special characteristics of the stratal trend surface resulted from jacking due to magmatic intrusion into the caprock previously controlled by an E-W-trending basement fault. Therefore, it is deduced that the major ore-controlling structures, which formed during regional horizontal compression, were reconstructed by the vertical jacking function of ore-forming magmas during the Yanshanian Epoch. During the ore-forming process, the local vertical jacking of magmas, coupled with the regional horizontal compression, optimized an extensive environment in the fluid- conduit network and accelerated the unmixing of poly-phase fluids following magmatic emplacement. Jacking also strengthened the vertical and lateral fluid-guiding structures, supplying more suitable physical conditions for multi-layer emplacement and wide-ranging transport of poly-phase fluids.展开更多
The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Caraj...The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
基金the Fostering Plan Fund for Beyond-Century Excellent Talent of the Ministry of Education the Science and Technology Key Item of the Ministry of Education (No. 03178)+4 种基金 the National Natural Science Foundation of China (No. 40234051) the 0pen Foundation of the State Key Laboratory of Geological Processes and Mineral Resources (GPMR0528) the China Postdoctoral Science Foundation (2005038361) the Special Plans of Science and Technology of the Land Resources Department (No. 20010103) the 111 Project (No. B07011).
文摘The Tongling ore cluster area experienced intensive compression and associated shearing during the Indosinian-Yanshanian Epoch, which formed a trunk ore-controlling fold and fault system in the caprock. The magmatic intrusion in the Yanshanian Epoch induced a multi-stage unmixing of poly-phase fluids, resulting in mineralization characterized by multi-layer, wide-range, and multiform styles. The magmatic intrusion in the Tongling area not only supplied the essential ore-forming materials, but also reconstructed the ore-controlling structures according to a trend surface simulation of the following five strata boundaries: Silurian-Devonian, Devonian-Carboniferous, Carboniferous- Permian, Middle Permian-Upper Permian and Permian -Triassic. The result of this simulation shows that there exists a significant difference between the strata in the upper part and those in the lower. The lower trend surfaces are antiform whereas the upper trend surfaces are synform. In addition, superposing of the trend surfaces of adjacent bed boundaries (such as, Silurian-Devonian boundary superposed upon Devonian-Carboniferous boundary) shows that the lower trend surface always pierces the one above. Moreover, the position and orientation of the pierced parts of the different superposed trend surfaces are similar and show E-W-trending zonal distribution in accordance with the distribution of the regional E-W-trending magmatic-metallogenic belt. Based on comprehensive analysis of the mechanical properties of the strata, structural deformation mechanisms, and field phenomena, it seems that the special characteristics of the stratal trend surface resulted from jacking due to magmatic intrusion into the caprock previously controlled by an E-W-trending basement fault. Therefore, it is deduced that the major ore-controlling structures, which formed during regional horizontal compression, were reconstructed by the vertical jacking function of ore-forming magmas during the Yanshanian Epoch. During the ore-forming process, the local vertical jacking of magmas, coupled with the regional horizontal compression, optimized an extensive environment in the fluid- conduit network and accelerated the unmixing of poly-phase fluids following magmatic emplacement. Jacking also strengthened the vertical and lateral fluid-guiding structures, supplying more suitable physical conditions for multi-layer emplacement and wide-ranging transport of poly-phase fluids.
基金supported by the National Natural Science Foundation of China (grant No. 40773038the Program of High-level Geological Talents (201309)Youth Geological Talents (201112) of the China Geological Survey
文摘The metamorphosed sedimentary type of iron deposits(BIF) is the most important type of iron deposits in the world, and super-large iron ore clusters of this type include the Quadrilatero Ferrifero district and Carajas in Brazil, Hamersley in Australia, Kursk in Russia, Central Province of India and Anshan-Benxi in China. Subordinated types of iron deposits are magmatic, volcanic-hosted and sedimentary ones. This paper briefly introduces the geological characteristics of major super-large iron ore clusters in the world. The proven reserves of iron ores in China are relatively abundant, but they are mainly low-grade ores. Moreover, a considerate part of iron ores are difficult to utilize for their difficult ore dressing, deep burial or other reasons. Iron ore deposits are relatively concentrated in 11 metallogenic provinces(belts), such as the Anshan-Benxi, eastern Hebei, Xichang-Central Yunnan Province and middle-lower reaches of Yangtze River. The main minerogenetic epoches vary widely from the Archean to Quaternary, and are mainly the Late Archean to Middle Proterozoic, Variscan, and Yanshanian periods. The main 7 genetic types of iron deposits in China are metamorphosed sedimentary type(BIF), magmatic type, volcanic-hosted type, skarn type, hydrothermal type, sedimentary type and weathered leaching type. The iron-rich ores occur predominantly in the skarn and marine volcanic-hosted iron deposits, locally in the metamorphosed sedimentary type(BIF) as hydrothermal reformation products. The theory of minerogenetic series of mineral deposits and minerogenic models has applied in investigation and prospecting of iron ore deposits. A combination of deep analyses of aeromagnetic anomalies and geomagnetic anomalies, with gravity anomalies are an effective method to seeking large and deep-buried iron deposits. China has a relatively great oresearching potential of iron ores, especially for metamorphosed sedimentary, skarn, and marine volcanic-hosted iron deposits. For the lower guarantee degree of iron and steel industry, China should give a trading and open the foreign mining markets.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.