Aim: To evaluate the joint action of phoxim and fenvalerate on the reproductive function in male Sprague-Dawley rats. Methods: The 2×2 factorial analysis experiment was used in the study. The pesticides were oral...Aim: To evaluate the joint action of phoxim and fenvalerate on the reproductive function in male Sprague-Dawley rats. Methods: The 2×2 factorial analysis experiment was used in the study. The pesticides were orally given at daily doses of phoxim (Pho) 8.2 nig/kg, fenvalerate (Fen) 3.3 mg/kg and Pho 8.2+Fen 3,3 mg/kg (Pho:Fen = 5:2), 5 days a week for 60 days. Sperm motility was measured with computer-assisted sperm motility analysis (CASA) and daily sperm production estimated. Immunoenzymatic method and electron microscopy were used to evaluate the serum testosterone and the testicular morphology, respectively. Results: There were significant decreases in sperm motility parameters in the treated animals, including straight line velocity (VSL), beat cross frequency (BCF), linearity (LIN) and straightness (STR). After treated with Fen, significant decreases in VSL, LIN and STR were demonstrated. Significant decreases of daily sperm production were seen in animals treated with Pho and Pho+Fen in comparison with the controls. Serum testosterone levels were not significantly changed in the treated groups. Factorial ANOVA showed that no significant interactions were noted between Pho and Fen in sperm motility, sperm production and serum testosterone. Both the single and mixed pesticides caused various degrees of testicular lesions, involving vacuolation of endoplasmic reticulum and necrosis of Sertoli cells. Conclusion: The pesticides may cause sperm motility changes and testicular lesions in male rats. The action of Pho and Fen may be additive.展开更多
The toxicities of fenvalerate (20% EC) to the 3rd instar larvae of diamondback moth (DBM), Plutella xylostella (L.), reared on three host plants viz., radish, oilseed rape, and cabbage were tested. The LC50 valu...The toxicities of fenvalerate (20% EC) to the 3rd instar larvae of diamondback moth (DBM), Plutella xylostella (L.), reared on three host plants viz., radish, oilseed rape, and cabbage were tested. The LC50 values of fenvalerate to the 3rd instar larvae of DBM varied with host plants, however, there wasn't any significant difference among them (P〉 0.05). Similarly, DBM fed on three host plants had same pupal weight, pupal period, pupation rate, adult emergence rate, female ratio, and fecundity. The activity of juvenile hormone esterase (JHE, EC 3.1.1.1) in the 3rd instar larvae of DMB did not significantly vary with host plants, either. These suggested that DBM had similar fitness on the three host plant species. When fed on the host plants pretreated with fenvalerate at the concentrations equivalent to LC20, LC50 and LC50, the pupation rate, pupal weight, adult emergence rate, female ratio, fecundity, and JHE activity of the tested insects were declined as compared with insects in control treatments fed on the same host plant species. Furthermore, the pupal period of the tested insects was extended after fenvalerate treatment. The decrease in JHE activity after fenvalerate treatment in the tested insects could partly explain the changes in the mentioned growth parameters. Whether the role of fenvalerate in the inhibition of JHE activity could serve as a new way to control DBM needs further investigation.展开更多
Objective To observe the effects of fenv',derate on calcium homeostasis in rat ovary. Methods Female SpragueDawley rats were orally given fenvalerate at dally doses of 0.00, 1.91, 9.55, and 31.80 mg/kg for four weeks...Objective To observe the effects of fenv',derate on calcium homeostasis in rat ovary. Methods Female SpragueDawley rats were orally given fenvalerate at dally doses of 0.00, 1.91, 9.55, and 31.80 mg/kg for four weeks. The ovary ultrastucture was observed by electron microscopy. Serum free calcium concentration was measured by atomic absorption spectrophotometry. The activities of phosphorylase a in rat ovary were evaluated by the chromatometry. The total content of calmodulin in ovary was estimated by ELISA at each stage of estrous cycle. Radioimmunoassay (R/A) was used to evaluate the level of serum progesterone. Results Histopathologically, damages of ovarian corpus luteum cells were observed. An increase in serum fi'ee calcium concentration was observed in rats treated with 31.80mg/kg fenvalerate. The activities of phosphorylase a enhanced in all treated groups, and fenvalerate increased the total content of calmodulin significantly in estrus period. Serum progesterone levels declined in fenvalerate exposed rats in diestrus. Conclusion Fenvalerate interferes with calcium homeostasis in rat ovary. Also, the inhibitory effects of fenvalerate on serum progesterone levels may be mediated partly through calcium signals.展开更多
The median lethal concentrations (LC50s) of aldrin, fenvalerate, captan and diazinon were determined for Clarias batrachus by trimmed Spearman-Karber method. The potency ratios of toxicity among them were analysed by ...The median lethal concentrations (LC50s) of aldrin, fenvalerate, captan and diazinon were determined for Clarias batrachus by trimmed Spearman-Karber method. The potency ratios of toxicity among them were analysed by parallel-line bioassay with quantal responses. The LC50s for 40 day of exposure of aldrin, fenvalerate, captan and diazinon were 0.00036,0.0094, 0.5473 and 2.4186 ppm respectively. These values were lower than those obtained for an exposure of 96 hour. It shows the greater toxicity of the pesticides in a long-term exposure. The relative toxic potency of aldrin fenvalerate, captan and diazinon was in a ratio of 6807:241:4:1 respectively. Thus the chemically different groups of pesticides exhibit an order of toxicity as aldrin > fenvalerate >captan > diazinon for the freshwater catfish, Clarias batrachus. It infers that the catfish is most sensitive to aldrin and least sensitive to diazinon. The comparison of the sensitivity of various species tested against these pesticidal chemicals has also been done to review the available information.展开更多
Objective Fenvalerate (20% EC) is a synthetic pyrethroid, which is commonly used in India by farmers for the protection of many food and vegetable crops against a wide variety of insects. However, its inhalation toxi...Objective Fenvalerate (20% EC) is a synthetic pyrethroid, which is commonly used in India by farmers for the protection of many food and vegetable crops against a wide variety of insects. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation exposure was carried out to investigate the hepatotoxic effects. Method Adult male rats were exposed to fen for 4 h/day, 5 days a week for 90 days by using Flow Past Nose Only Inhalation Chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results The results indicated hepatomegaly, increased activities of serum clinical enzymes (indicative of liver damage/dysfunction) along with pronounced histopathological damage of liver. Conclusion The hepatotoxic potential of formulated Fen (20% EC) in rats exposed by nose only inhalation is being reported for the first time and warrant adequate safety measures for human beings exposed to this insecticide, particularly by inhalation route.展开更多
The strain of fenvalerate-resistant cotton aphids was selected using fenvalerate insecticide in the laboratory, the resistance factor of the strain was 199.54. Three degenerate primers were designed and used to perfor...The strain of fenvalerate-resistant cotton aphids was selected using fenvalerate insecticide in the laboratory, the resistance factor of the strain was 199.54. Three degenerate primers were designed and used to perform PCR amplification. A cDNA encoding partial sodium channel gene was cloned from the fenvalerate-resistant and -susceptible strains. There were two nucleotide acid differences between fenvalerate-resistant strain and -susceptible strain, resulting in an amino acid mutation, Met→Leu. It is predicted that the mutation is related to the cotton aphid resistance to fenvalerate.展开更多
To understand the degradation and environmental fate of pyrethroids, the process of their photodegradation under simulated natural conditions was investigated. The results showed that the degradation process follows f...To understand the degradation and environmental fate of pyrethroids, the process of their photodegradation under simulated natural conditions was investigated. The results showed that the degradation process follows first-order kinetics. The degradation intermediates were identified with gas chromatography-mass spectrometry. A plausible mechanism was discussed to explain the process. Several influences on degradation process were investigated and reported such as the effects of initial concentration of pyrethroids, total time of light irradiation, solvents, and light source, as well as the effect of a few substances that exist in the environment. This study could be a good reference for the degradation of pyrethroids in practical circumstances.展开更多
Background Fenvalerate (FEN) has been demonstrated to be a reproductive toxicant in humans and rodents. However,little is known about whether short-term exposure to low-dose FEN produces reproductive toxicity.Method...Background Fenvalerate (FEN) has been demonstrated to be a reproductive toxicant in humans and rodents. However,little is known about whether short-term exposure to low-dose FEN produces reproductive toxicity.Methods We administered FEN (0.009 375, 0.1875, 3.750, or 45.00 mg·kg-1d-1 by gavage for 30 days) to male ICR mice and compared reproductive toxicity parameters between groups receiving different concentrations of FEN.Reproductive toxicity was evaluated by computer-assisted semen quality analysis (CASA), chlortetracycline (CTC) assay,and histopathology.Results The sperm morphology and testis histology of FEN-exposed mice (all doses) were similar to that in controlling mice. Exposure to FEN at a concentration of 0.1875 mg·kg-1d-1 decreased sperm path straightness (STR) and linearity (LIN) (both P〈 0.05), but had no significant impact on average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), lateral amplitude (ALH), beat cross frequency (BCF), or progressive motility (MOT). FEN reduced the rate of mouse sperm capacitation in a dose-dependent manner.Conclusion The present results demonstrate that exposure to low-dose FEN for 30 days reduces semen quality and sperm capacitation in adult mice.展开更多
The seasonal changes of insecticide resistance and stability in hymenopteran Cotesia plutellae, collected from Jianxin, Fuzhou-City, and Shangjie, Minhou-County, Fujian, China, were assessed by using a dry residual fi...The seasonal changes of insecticide resistance and stability in hymenopteran Cotesia plutellae, collected from Jianxin, Fuzhou-City, and Shangjie, Minhou-County, Fujian, China, were assessed by using a dry residual film method. The resistance to two insecticides in the field populations of C. plutellae was not stable under insecticide-free conditions in the insectarium. Compared with susceptible F11 progeny of C. plutellae in the insectarium, the resistance ratios (RR) in F0 parents were 18.4 for fenvalerate and 11.4 for cypermethrin based on LC50 at 9 hours, and 32.8 for fenvalerate and 28.5 for cypermethrin based on LC50 at 24 hours when the parasitoids were left in contact with the insecticides for 1 hour and mortalities were recorded at 9 and 24 hours, respectively. However, the RR in a field population of C. plutellae were 9.2 for fenvalerate and 12.7 for cypermethrin, if the parasitoids were left in contact with the insecticides for 24 hours. The resistances to the two pyrethroids in other field populations collected from Jianxin and Shangjie from November 2000 and July 2004 were also determined. Significant seasonal variations of resistance to the two insecticides in the field populations of C. plutellae were found. The RR were 3.0-18.4 for fenvalerate and 4.8-20.6 for cypermethrin in Jianxin populations from November 2000 to April 2002 based on LC50 at 9 h, and 2.3-13.6 for fenvalerate and 3.6-16.0 for cypermethrin in Shangjie populations from May 2002 to July 2004 based on LC50 at 24 hours. The resistance levels were high in spring and autumn and decreased sharply in summer. In addition, significant recovery from the knocked-down caused by the insecticides was found in the F0 and field populations of C. plutellae which were resistant to fenvalerate and cypermethrin if the parasitoids were left in contact with the pyrethroids for 1 hour. However, no recovery was found in susceptible F11 progeny.展开更多
文摘Aim: To evaluate the joint action of phoxim and fenvalerate on the reproductive function in male Sprague-Dawley rats. Methods: The 2×2 factorial analysis experiment was used in the study. The pesticides were orally given at daily doses of phoxim (Pho) 8.2 nig/kg, fenvalerate (Fen) 3.3 mg/kg and Pho 8.2+Fen 3,3 mg/kg (Pho:Fen = 5:2), 5 days a week for 60 days. Sperm motility was measured with computer-assisted sperm motility analysis (CASA) and daily sperm production estimated. Immunoenzymatic method and electron microscopy were used to evaluate the serum testosterone and the testicular morphology, respectively. Results: There were significant decreases in sperm motility parameters in the treated animals, including straight line velocity (VSL), beat cross frequency (BCF), linearity (LIN) and straightness (STR). After treated with Fen, significant decreases in VSL, LIN and STR were demonstrated. Significant decreases of daily sperm production were seen in animals treated with Pho and Pho+Fen in comparison with the controls. Serum testosterone levels were not significantly changed in the treated groups. Factorial ANOVA showed that no significant interactions were noted between Pho and Fen in sperm motility, sperm production and serum testosterone. Both the single and mixed pesticides caused various degrees of testicular lesions, involving vacuolation of endoplasmic reticulum and necrosis of Sertoli cells. Conclusion: The pesticides may cause sperm motility changes and testicular lesions in male rats. The action of Pho and Fen may be additive.
基金support for this work was provided by the National Natural Science Foundation of China(30971922)the Natural Science Foundation of Fujian Province, China (B0320003, B0410015, 2004J010, and2007F5021)+1 种基金the Science and Technology Innovation Foundation of Fujian Academy of Agricultural Science,China (STIF-Y07)the Program for New Century Excellent Talents in University of Fujian Province, China,to Associate Professor Gu Xiaojun
文摘The toxicities of fenvalerate (20% EC) to the 3rd instar larvae of diamondback moth (DBM), Plutella xylostella (L.), reared on three host plants viz., radish, oilseed rape, and cabbage were tested. The LC50 values of fenvalerate to the 3rd instar larvae of DBM varied with host plants, however, there wasn't any significant difference among them (P〉 0.05). Similarly, DBM fed on three host plants had same pupal weight, pupal period, pupation rate, adult emergence rate, female ratio, and fecundity. The activity of juvenile hormone esterase (JHE, EC 3.1.1.1) in the 3rd instar larvae of DMB did not significantly vary with host plants, either. These suggested that DBM had similar fitness on the three host plant species. When fed on the host plants pretreated with fenvalerate at the concentrations equivalent to LC20, LC50 and LC50, the pupation rate, pupal weight, adult emergence rate, female ratio, fecundity, and JHE activity of the tested insects were declined as compared with insects in control treatments fed on the same host plant species. Furthermore, the pupal period of the tested insects was extended after fenvalerate treatment. The decrease in JHE activity after fenvalerate treatment in the tested insects could partly explain the changes in the mentioned growth parameters. Whether the role of fenvalerate in the inhibition of JHE activity could serve as a new way to control DBM needs further investigation.
基金This work was supported by National Natural Science Foundation of China (No. C03010501), the Preliminary Study of an Important Project in the National Basic Research (200150) and the Greatest Project in the National Basic Research (2002CB512908).
文摘Objective To observe the effects of fenv',derate on calcium homeostasis in rat ovary. Methods Female SpragueDawley rats were orally given fenvalerate at dally doses of 0.00, 1.91, 9.55, and 31.80 mg/kg for four weeks. The ovary ultrastucture was observed by electron microscopy. Serum free calcium concentration was measured by atomic absorption spectrophotometry. The activities of phosphorylase a in rat ovary were evaluated by the chromatometry. The total content of calmodulin in ovary was estimated by ELISA at each stage of estrous cycle. Radioimmunoassay (R/A) was used to evaluate the level of serum progesterone. Results Histopathologically, damages of ovarian corpus luteum cells were observed. An increase in serum fi'ee calcium concentration was observed in rats treated with 31.80mg/kg fenvalerate. The activities of phosphorylase a enhanced in all treated groups, and fenvalerate increased the total content of calmodulin significantly in estrus period. Serum progesterone levels declined in fenvalerate exposed rats in diestrus. Conclusion Fenvalerate interferes with calcium homeostasis in rat ovary. Also, the inhibitory effects of fenvalerate on serum progesterone levels may be mediated partly through calcium signals.
文摘The median lethal concentrations (LC50s) of aldrin, fenvalerate, captan and diazinon were determined for Clarias batrachus by trimmed Spearman-Karber method. The potency ratios of toxicity among them were analysed by parallel-line bioassay with quantal responses. The LC50s for 40 day of exposure of aldrin, fenvalerate, captan and diazinon were 0.00036,0.0094, 0.5473 and 2.4186 ppm respectively. These values were lower than those obtained for an exposure of 96 hour. It shows the greater toxicity of the pesticides in a long-term exposure. The relative toxic potency of aldrin fenvalerate, captan and diazinon was in a ratio of 6807:241:4:1 respectively. Thus the chemically different groups of pesticides exhibit an order of toxicity as aldrin > fenvalerate >captan > diazinon for the freshwater catfish, Clarias batrachus. It infers that the catfish is most sensitive to aldrin and least sensitive to diazinon. The comparison of the sensitivity of various species tested against these pesticidal chemicals has also been done to review the available information.
文摘Objective Fenvalerate (20% EC) is a synthetic pyrethroid, which is commonly used in India by farmers for the protection of many food and vegetable crops against a wide variety of insects. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation exposure was carried out to investigate the hepatotoxic effects. Method Adult male rats were exposed to fen for 4 h/day, 5 days a week for 90 days by using Flow Past Nose Only Inhalation Chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results The results indicated hepatomegaly, increased activities of serum clinical enzymes (indicative of liver damage/dysfunction) along with pronounced histopathological damage of liver. Conclusion The hepatotoxic potential of formulated Fen (20% EC) in rats exposed by nose only inhalation is being reported for the first time and warrant adequate safety measures for human beings exposed to this insecticide, particularly by inhalation route.
基金supported by the National 973 Program(G2000016207)National 863 Program,China(2001AA249041).
文摘The strain of fenvalerate-resistant cotton aphids was selected using fenvalerate insecticide in the laboratory, the resistance factor of the strain was 199.54. Three degenerate primers were designed and used to perform PCR amplification. A cDNA encoding partial sodium channel gene was cloned from the fenvalerate-resistant and -susceptible strains. There were two nucleotide acid differences between fenvalerate-resistant strain and -susceptible strain, resulting in an amino acid mutation, Met→Leu. It is predicted that the mutation is related to the cotton aphid resistance to fenvalerate.
基金supported by the State Key Laboratory of Environmental Chemistry and Ecotoxicology of China(No. KF2008-08)the Education Department of Hebei(No. ZH200805)
文摘To understand the degradation and environmental fate of pyrethroids, the process of their photodegradation under simulated natural conditions was investigated. The results showed that the degradation process follows first-order kinetics. The degradation intermediates were identified with gas chromatography-mass spectrometry. A plausible mechanism was discussed to explain the process. Several influences on degradation process were investigated and reported such as the effects of initial concentration of pyrethroids, total time of light irradiation, solvents, and light source, as well as the effect of a few substances that exist in the environment. This study could be a good reference for the degradation of pyrethroids in practical circumstances.
文摘Background Fenvalerate (FEN) has been demonstrated to be a reproductive toxicant in humans and rodents. However,little is known about whether short-term exposure to low-dose FEN produces reproductive toxicity.Methods We administered FEN (0.009 375, 0.1875, 3.750, or 45.00 mg·kg-1d-1 by gavage for 30 days) to male ICR mice and compared reproductive toxicity parameters between groups receiving different concentrations of FEN.Reproductive toxicity was evaluated by computer-assisted semen quality analysis (CASA), chlortetracycline (CTC) assay,and histopathology.Results The sperm morphology and testis histology of FEN-exposed mice (all doses) were similar to that in controlling mice. Exposure to FEN at a concentration of 0.1875 mg·kg-1d-1 decreased sperm path straightness (STR) and linearity (LIN) (both P〈 0.05), but had no significant impact on average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), lateral amplitude (ALH), beat cross frequency (BCF), or progressive motility (MOT). FEN reduced the rate of mouse sperm capacitation in a dose-dependent manner.Conclusion The present results demonstrate that exposure to low-dose FEN for 30 days reduces semen quality and sperm capacitation in adult mice.
基金Acknowledgments This work was supported by the Natural Science Foundation of Fujian, China (No. B0410016) and China-Japan Cooperation Program by Science and Technique Bureau of Fujian Province, China (20051002). This work was also supported in part by Grants-in-Aid from the Japan Society for the Promotion of Science (Nos. (A) 11356002 and (C) 14606001) and China-Japan Cooperated Program by JSPS.
文摘The seasonal changes of insecticide resistance and stability in hymenopteran Cotesia plutellae, collected from Jianxin, Fuzhou-City, and Shangjie, Minhou-County, Fujian, China, were assessed by using a dry residual film method. The resistance to two insecticides in the field populations of C. plutellae was not stable under insecticide-free conditions in the insectarium. Compared with susceptible F11 progeny of C. plutellae in the insectarium, the resistance ratios (RR) in F0 parents were 18.4 for fenvalerate and 11.4 for cypermethrin based on LC50 at 9 hours, and 32.8 for fenvalerate and 28.5 for cypermethrin based on LC50 at 24 hours when the parasitoids were left in contact with the insecticides for 1 hour and mortalities were recorded at 9 and 24 hours, respectively. However, the RR in a field population of C. plutellae were 9.2 for fenvalerate and 12.7 for cypermethrin, if the parasitoids were left in contact with the insecticides for 24 hours. The resistances to the two pyrethroids in other field populations collected from Jianxin and Shangjie from November 2000 and July 2004 were also determined. Significant seasonal variations of resistance to the two insecticides in the field populations of C. plutellae were found. The RR were 3.0-18.4 for fenvalerate and 4.8-20.6 for cypermethrin in Jianxin populations from November 2000 to April 2002 based on LC50 at 9 h, and 2.3-13.6 for fenvalerate and 3.6-16.0 for cypermethrin in Shangjie populations from May 2002 to July 2004 based on LC50 at 24 hours. The resistance levels were high in spring and autumn and decreased sharply in summer. In addition, significant recovery from the knocked-down caused by the insecticides was found in the F0 and field populations of C. plutellae which were resistant to fenvalerate and cypermethrin if the parasitoids were left in contact with the pyrethroids for 1 hour. However, no recovery was found in susceptible F11 progeny.