期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Journey into Fermat's Equation 被引量:1
1
作者 Mario De Paz Enzo Bonacci 《Journal of Mathematics and System Science》 2012年第9期539-544,共6页
As expounded in some recent mathematical conferences, this research on that amazing source of algebraic ideas known as Fermat's equation is aimed to prove how Fermat triples can be limited until the impossible existe... As expounded in some recent mathematical conferences, this research on that amazing source of algebraic ideas known as Fermat's equation is aimed to prove how Fermat triples can be limited until the impossible existence through a criterion of incompatible parities related to unexplored properties of the binomial coefficients. In this paper, the authors use a technique based on the analysis of four numbers and their internal relations with three basic compulsory factors. It leads to the practical impossibility to find any triple of natural numbers candidate to satisfy Fermat's equation, because when the authors try to meet a condition between parity and range the authors are compelled to violate the other one, so that they are irreducibly alternative. In particular, there is a parity violation when the authors choose all the basic factors in the allowed range and the authors obtain exceeding values of one of the involved variables when the authors try to restore the parity. Since Fermat's last theorem would consequently be demonstrated, many readers could recall the never found elementary proof of FLT (Fermat's last theorem) claimed by Pierre de Fermat. The authors are not encouraging such an interpretation because this paper is intended as a journey into Fermat's equation and the reader's attitude should be towards the algebraic achievements here proposed, with their possible hidden flaws and future developments, rather than to legendary problems like Fermat's riddle. 展开更多
关键词 fermat's equation binomial coefficients incompatible parities fermat's last theorem fermat's little theorem.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部