The digestive tract of termite(Microcerotermes diversus) contains a variety of lignocellulose-degrading bacteria with exocellulases enzyme activity, not found in the rumen, which could potentially improve fiber degrad...The digestive tract of termite(Microcerotermes diversus) contains a variety of lignocellulose-degrading bacteria with exocellulases enzyme activity, not found in the rumen, which could potentially improve fiber degradation in the rumen. The objectives of the current study were to determine the effect of inoculation of rumen fluid(RF) with three species of bacteria isolated from termite digestive tract, Bacillus licheniformis, Ochrobactrum intermedium, and Microbacterium paludicola, on in vitro gas production(IVGP), fermentation parameters, nutrient disappearance, microbial populations, and hydrolytic enzyme activities with fibrous wheat straw(WS) and date leaf(DL) as incubation substrate. Inoculation of RF with either of three termite bacteria increased(P<0.05) ammonia-N concentration compared with the control group(free of termite gut bacteria). Termite bacteria inoculation had no effect(P>0.05) on gas production characteristics, dry matter, organic matter and neutral detergent fiber disappearance, pH, and concentration and composition of volatile fatty acids. Population of proteolytic bacteria and protozoa, but not cellulolytic bacteria, were increased(P<0.05) when RF was inoculated with termite bacteria with both WS and DL substrates. Inoculation of RF with termite bacteria increased protease activity, while activities of carboxymethyl-cellulase, microcrystalline-cellulase, α-amylase and filter paper degrading activity remained unchanged(P>0.05). Overall, the results of this study indicated that transferring lignocellulose-degrading bacteria, isolated from digestive tract of termite, to rumen liquid increased protozoa and proteolytic bacteria population and consequently increased protease activity and ammonia-N concentration in vitro, however, no effect on fermentation and fiber degradation parameters were detected. These results suggest that the termite bacteria might be rapidly lysed by the rumen microbes before beneficial effects on the rumen fermentation process could occur.展开更多
Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were...Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.展开更多
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile...Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.展开更多
The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi...The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.展开更多
Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes we...Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis.展开更多
The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilize...The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilizers have been applied to the soil to improve crop yields in China, which not only increases production cost but also reduces soil quality. Therefore, reasonable application of N fertilizer becomes a key problem after straw retention. This study aimed to assess the effects of applying maize straw with high quality alfalfa straw on mineral N content, microbial biomass and enzyme activity under controlled conditions. The effect of applying maize straw with alfalfa straw was compared with that of maize straw in combination with N fertilizer under the same C: N ratio (25:1). The laboratory incubation experiment consisted of four treatments: (1) soil with no addition (CK); (2) soil amended with maize straw (M); (3) soil amended with alfalfa straw and maize straw with an adjusted C: N ratio of 25:1 (MM); (4) soil amended with inorganic nitrogen fertilizer and maize straw with an adjusted C:N ratio of 25:1 (MF). The results showed that application of maize straw leaded to an N immobilization during the 270 d of incubation. Combined application of alfalfa and maize straw and or mineral N fertilizer alleviates the N immobilization and increase soil mineral N content. Compared to MF treatment, MM treatment prolonged N availability during the incubation. MM and MF treatments increased the soil microbial biomass carbon and nitrogen contents, and soil invertase and β-glycosidase activities. There was no difference between MM and M treatment in soil urease activity. MF treatment had significantly negative influence on soil urease activity compared with M treatment. The amount of added N significantly affected mineral N content, soil microbial biomass and enzyme activity. The mixture of alfalfa straw and maize straw sustains higher level of mineral N content, microbial biomass and enzyme activity as it had high N input compared to maize straw in combination with N fertilizer. It is concluded that alfalfa straw may be a better N source than N fertilizer in alleviating N immobilization caused by maize straw retention.展开更多
To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient...To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient planting modes,and the variations of soil microbial flora and enzyme activities were analyzed. The soil microbial count and total bacteria of the vegetable efficient cultivation mode were significantly higher than that of the control (traditional planting mode) in each planting area,and the microbial diversity index was also improved to varying de- grees.The soil phosphatase,catalase and urease activities of the vegetable efficient planting mode were higher than that of the control.The soil catalase and urease activities were higher than that of the control by 1.37-1.44 and 1.51-2.80 times. Application of vegetable efficient planting mode in different regions will help to im- prove the soil quality in a given period.展开更多
[Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentr...[Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentrations of exogenous cadmium (Cd) on the growth of sugarcane, the quantities of soil microorganisms and the activity of soil enzymes were studied. [Method] The plant height, stem di- ameter and cane yield of sugarcane, the soil microbial quantities and enzyme activi- ties were determined by using sugarcane as a material treated with different Cd concentrations (0, 25, 50, 100, 250 and 500 mg/kg) under potted conditions. IRe- suit] The results showed that the plant height, stem diameter and the yield of sug- arcane decreased with the increase of Cd concentration in the soil, and the higher the Cd concentration, the more obvious the inhibitory effect. The Cd contamination changed the enzyme activity, and the activities of urease and acid phosphatase sig- nificantly decreased with the increase of Cd concentration, especially when the Cd concentration reached 100 mg/kg. The sensitivity of the two soil enzymes to Cd ranked as urease〉acid phosphatase. Cd contamination also changed soil microbial quantities. Fungi, bacteria and actinomycetes significantly decreased at the Cd con- centration level of 100 mg/kg. There were significant and highly significant correla- tions between Cd contamination concentration and fungi, bacteria and actinomycetes, the activities of urease and acid phosphatase, plant height, stem diameter as well as cane yield. [Conclusion] Under the conditions of potted planted sugarcane, ex- ogenous Cd contamination affected the growth of sugarcane, the quantities of soil microorclanisms and soil enzyme activities to different degrees.展开更多
The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with diff...The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with different last-season crops was in-vestigated at different growth stages in this study. The results showed the activity variation of the 3 enzymes differed in the 2 soils at different growth stages. The catalase activity in the arid red soil trended to decrease overal from the vigorous growing stage to harvesting stage; while it decreased gradual y in the rice soil until the harvesting stage. The phosphatase activity in the 2 soils al increased with the proceeding of growth period. The urease activity in the arid red soil decreased gradual y at different growth stages, but the variation of urease activity in rice soil was irregular. During the growth of flue-cured tobacco, the catalase and urease ac-tivity in the arid red soil increased first and then decreased, and the phosphatase activity increased gradual y. ln rice soil, the catalase activity increased first and then decreased; the phosphatase activity decreased first and then increased; the urease activity increased first, then decreased and increased last. The activity of al the en-zymes in the 2 soils showed significant differences compared to the control except some enzymes at the vigorous growing stage. lt was suggested the planting of flue-cured tobacco would affect greatly the soil enzyme activities.展开更多
[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like ...[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like to investigate the changes of the soil enzyme activity and microbial biomass at different growing stages of rape (Brassica juncea L.) at different soil vanadium concentrations (soil background value was 147 mg/kg, spiked with 0, 50, 100, 150, 250 and 500 mg/kg of exogenous vanadium). [Result] Among all enzymes examined, polyphenol oxidase was most sensitive to soil vanadium. Addition of 50 mg/kg vanadium decreased its activity up to 56% of the control probably due to the vanadium toxicity. In comparison, the ac- tivities of sucrase, urease and catalase was less affected by soil vanadium. Surpris- ingly, the activity of sucrase, urease and catalase at the rape seedling stage differed significantly from at the maturity stage, highlighting the potential impact of plant growth on the vanadium-soil enzyme interaction. Different soil vanadium concentra- tions led to increases of microbial biomass to different extents. However, the corre- lation between soil microbial biomass carbon and phosphorus with vanadium con- centrations was insignificant. This revealed that the presence of additional factors (eg. plant) affected soil microbial biomass carbon and phosphorus aside from soil vanadium. [Conclusion] Polyphenol oxidase may be considered as an indicator of soil vanadium contamination. Due to the highly complicated interaction between vanadium and soil biological activities during plant growth, more investigations are required to reveal the mechanisms beyond our findings here.展开更多
A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Bra...A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Brassica parachinensis Bailey).The results showed that all the application of these four amino acids could increase the yield of flowering Chinese cabbage,significantly raise the content of soluble sugar,and reduce the accumulation of nitrate.The applications of three other amino acids except alanine can increase the content of soluble proteins and decrease the accumulation of oxalic acid.However,the application of amino acid has insignificant influences on the SPAD number of chlorophyll,and causes the decrease of Vitamin C content.Meanwhile,the application of amino acid can improve the activity of nitrate reductase(NR) and glutamate dehydrogenase(GDH) as well.It shows that the application of amino acid is beneficial to improve ammonia metabolism,reduce the accumulation of nitrate and oxalic acid,increase the content of soluble sugar and soluble proteins,and improve the quality of flowering Chinese cabbage.展开更多
Background: Colibacillosis caused by enterotoxigenic Escherichia coil (E. coil} results in economic losses in the poultry industry. Antibiotics are usually used to control colibacillosis, however, E. coli has varyin...Background: Colibacillosis caused by enterotoxigenic Escherichia coil (E. coil} results in economic losses in the poultry industry. Antibiotics are usually used to control colibacillosis, however, E. coli has varying degrees of resistance to different antibiotics. Therefore the use of probiotics is becoming accepted as an alternative to antibiotics. In this study, we evaluated the effects of Clostfidium butyricum (C. butyficum) on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Eschefichia coli (E. coil) K88. Methods: The chickens were randomly divided into four treatment groups for 28 days. Negative control treatment (NC) consisted of birds fed a basal diet without E. coil K88 challenge and positive control treatment (PC) consisted of birds fed a basal diet and challenged with E. coil K88. C. buO/ricum probiotic treatment (CB) consisted of birds fed a diet containing 2 x 107 cfu C. buO/ricum/kg of diet and challenged with E. coil K88. Colistin sulfate antibiotic treatment (CS) consisted of birds fed a diet containing 20 mg colistin sulfate/kg of diet and challenged with E. coil K88. Results: The body weight (BW) and average day gain (ADG) in the broilers of CB group were higher (P 〈 0.05) than the broilers in the PC group overall except the ADG in the 14-21 d post-challenge. The birds in CB treatment had higher (P 〈 0.05) concentration of tumor necrosis factor-a (TNF-a) at 3 and 7 d post-challenge, and higher (P 〈 0.05) concentration of interleukin-4 (IL-4) at 14 d post-challenge than those in the PC treatment group. The concentration of serum endotoxin in CB birds was lower (P 〈 0.05) at 21 d post-challenge, and the concentrations of serum diamine oxidase in CB birds were lower (P 〈 0.05) at 14 and 21 d post-challenge than in PC birds. Birds in CB treatment group had higher (P 〈 0.05) jejunum villi height than those in PC, NC, or CS treatment at 7, 14, and 21 d post-challenge. In comparison to PC birds, the CB birds had lower (P 〈 0.05) jejunum crypt depth during the whole experiment. The birds in CB or CS treatment group had higher (P 〈 0.05) activities of amylase and protease at 3, 7, and 14 d post-challenge, and higher (P 〈 0.05) activity of lipase at 3, 7 d post-challenge than PC birds.展开更多
[Objective] This study aimed to investigate the effects of different exoge- nous hormones on the rooting of Syringa microphylla cuttings and the change in related enzymes activity during the rooting process. [Method] ...[Objective] This study aimed to investigate the effects of different exoge- nous hormones on the rooting of Syringa microphylla cuttings and the change in related enzymes activity during the rooting process. [Method] Three different exoge- nous hormones IBA, NAA and ABT, each with concentrations of 500, 1 000, 1 500 and 2 000 mg/L were used to treat S. microphylla cuttings, and changes in the ac- tivities of peroxidase (POD), poiyphenol oxidase (PPO) and indoleacetic acid oxidase (IAAO) during the rooting process were also investigated. [Result] The most appro- priate concentrations of IBA, ABT and NAA were 1 500, 1 000 and 1 000 mg/L, respectively, and the 1 500 mg/L IBA treatment exhibited the best effect on rooting. Throughout the rooting process, POD and PPO activities showed the same trends in the treatment groups as those in the control group, but the POD and PPO activi- ties in the treatment groups were increased significantly, with greater amplitude of variation; at the early stage, IAAO activity exhibited an opposite trend between the control group and the treatment groups, which increased slowly in the former, but decreased rapidly in the latter, and it was significantly lower in the treatment groups compared to the control; additionally, higher POD and IAAO activities were con- ducive to the induction of adventitious roots, and lower POD and IAAO activities fa- vored their formation and elongation. [Conclusion] This study has preliminarily clari- fied the rooting mechanism of S. microphylla cuttings.展开更多
The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich p...The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover (PS) and sticky corn stover (SS). Forage yield of corn stover was weighed and ensiled with two treatments: (1) hybrid sticky waxy corn stover (control), and (2) hybrid purple waxy corn stover (treatment). Samples were stored in mini-silos for periods of 0, 7, 14, 21,42, 63, 84, and 105 d. The results showed that PS had significantly higher (P〈0.05) yields of dry matter (DM), organic matter (OM), gross energy (GE), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and total anthocyanins than that of the SS. Anthocyanin-rich purple corn stover silage (PSS) showed higher (P〈0.05) levels of DM and CP relative to the sticky corn stover silage (SSS). Although anthocyanin-rich PSS displayed a lower (P〈0.05) level of pelargonidin-3-glucoside (P3G), it had higher (P〈0.05) levels of peonidin (Peo) and pelargonidin (Pel) compared to the control. Delphinidin (Del) and malvidin (Mal) were not detected in SSS during the ensilage period; in PSS, Del was no longer detected after 7 d of ensilage. Specifically, total anthocyanins in anthocyanin-rich PSS decreased rapidly (P〈0.05) prior to 7 d of ensilage, and then remained at relatively stable (P〉0.05) constants. Compared to the anthocyanin-rich PSS, SSS displayed significantly higher (P〈0.05) pH value and ammonia nitrogen (NH3-N) content. Propionic acid (PA) at 0 d and butyric acid (BA) during the entire study period were not detected, whereas anthocyanin-rich PSS showed a higher (P〈0.05) level of lactic acid (LA) than that of the SSS. Compared with the SSS extract, anthocyanin-rich PSS extract showed a higher (P〈0.05) level of 2,2-diphenyl-1-picryihydrazyl (DPPH) scavenging activity and displayed a lower (P〈0.05) half maximal inhibitory concentration (IC50) value. Moreover, anthocyanin-rich PSS reduced (P〈0.05) gas production (GP), and displayed lower levels of immediately soluble fraction and ratio of acetic acid (AA) to PA at 12 h, but the other parameters were unaffected (P〉0.05) relative to the control. Taken together, the results indicated that: (1) anthocyanins could be stable in silage; (2) anthocyanin-rich PSS showed better silage fermentative quality and stronger antioxidant activity; and (3) anthocyanin-rich PSS had no negative effect on rumen fermentation parameters.展开更多
The industrial processing of shrimp produces massive quantities of solid waste that is a notable source of animal protein, chitin, carotenoids, and other bioactive compounds that are not appropriately utilized. In the...The industrial processing of shrimp produces massive quantities of solid waste that is a notable source of animal protein, chitin, carotenoids, and other bioactive compounds that are not appropriately utilized. In the present study, chitin and protein extraction from shrimp head with autolysis and fermentation using Bacillus licheniformis were investigated. The results showed that when shrimp heads were autolyzed with a natural pH at 50℃ for 4 h, the total amino acid nitrogen in the supernatant was 5.01 mg mL^-1. Then, when a 50%(v/m) inoculum of the hydrolysate was incubated at 60℃ for 10 h, a deproteinization rate of 88.3% could be obtained. The fermented supernatant was processed into a dry protein powder, while the residues were demineralized by 10% citric acid for chitin. The recovered protein powder contained 5.5% moisture, 11.5% ash, and 66.7% protein, while the chitin contained 3.5% moisture, 2.1% ash, and 3.1% protein. In addition, amino acids, minerals, heavy metals, the degree of acetylation, microstructure, and Fourier-transform infrared(FT-IR) spectroscopy results were analyzed. Furthermore, the statistics of the large scale trial after treatment with 20 kg of shrimp heads were analyzed. Thus, this work made the shrimp waste utilization environmentally sound and valuable.展开更多
The effect of water temperature on gut mass and digestive enzyme activity in sea cucumber Apostichopusjaponicus, including relative gut mass (RGM), amylase, lipase, pepsin and trypsin activities were studied at temp...The effect of water temperature on gut mass and digestive enzyme activity in sea cucumber Apostichopusjaponicus, including relative gut mass (RGM), amylase, lipase, pepsin and trypsin activities were studied at temperatures of 7, 14, 21, and 28℃ over a period of 40 days. Results show that RGM significantly decreased after 40 days at 21 ℃ and markedly decreased over the whole experiment period at 28℃; however, no significant effect of duration was observed at 7 or 14℃. At 14℃, trypsin activity significantly decreased over 10 and 20 days, then increased; amylase and trypsin activity significantly decreased after 40 days at 28℃. However, no significant effect of duration was found on amylase, pepsin or trypsin activities in the other temperature treatment groups. At 28℃, lipase activity peaked in 20 days and then markedly decreased to a minimum at the end of the experiment. On the other hand, pepsin activity at 28℃ continuously increased over the whole experimental period. Principle component analysis showed that sea cucumbers on day 40 in the 21℃ group and in the previous 20 days in the 28℃ group were in the prophase of aestivation. At 28℃, sea cucumbers aestivated at 30-40 days after the start of the experiment. It is concluded that the effect of temperature on the digestion ofA. japonicus is comparatively weak within a specific range of water temperatures and aestivation behavior is accompanied by significant changes in RGM and digestive enzyme activities.展开更多
In order to identify the effects of drought stress on protective enzyme activity and physiological properties, four mulberry varieties, i.e.,'Nanye- 1', 'Yunsang- 1', 'Xinyizhilai' and 'Husang-32' in the Panxi...In order to identify the effects of drought stress on protective enzyme activity and physiological properties, four mulberry varieties, i.e.,'Nanye- 1', 'Yunsang- 1', 'Xinyizhilai' and 'Husang-32' in the Panxi Region of Sichuan Province, China, were selected. The activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in four mulberry varieties was determined. Soluble protein, soluble sugar, proline, net photosynthetic rate and transpiration rate of mulberry leaves were analyzed. The results show that during the early stages of drought stress, protective enzyme activities in four mulberry varieties continually increased. However, prolonged and intensified drought stress decreased their activities. After re-watering, they gradually returned to normal levels. Under drought stress and after re-watering, 'Nanye-l' and 'Yunsang-l' clearly showed smaller changes in soluble protein content than the 'Xinyizhilai' and 'Husang-32' varieties, whereas changes in their soluble sugar content were clearly greater than these last two varieties. When water deficit was protracted and intensified, 'Nanye-1' and 'Yunsang-1' still showed higher net photosynthetic, transpiration rates and water-use efficiency than 'Xinyizhilai' and 'Husang-32'.展开更多
The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in He...The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2.展开更多
The effects of a diet containing Hanseniaspora opuntiae C21 on growth and digestive enzyme activity were estimated in juvenile Apostichopus japonicus. Groups of sea cucumbers were fed diets containing H. opuntiae C21 ...The effects of a diet containing Hanseniaspora opuntiae C21 on growth and digestive enzyme activity were estimated in juvenile Apostichopus japonicus. Groups of sea cucumbers were fed diets containing H. opuntiae C21 at 0(control), 10 4, 10 5, and 10 6 CFU(colony-forming units)/g feed. Results showed that after 45 d the specific growth rate(SGR) of sea cucumbers fed a C21-supplemented diet at 10 4 CFU/g feed was significantly higher than that of the control( P < 0.05). Intestinal trypsin and lipase activities were significantly enhanced by C21 administration at 10 4 and 10 5 CFU/g feed compared with the control( P < 0.05). After feeding for 23–42 d, C21 was demonstrated by denaturing gradient gel electrophoresis to be present in the intestine of sea cucumbers. In addition, after feeding the C21-supplemented diets for 15 d, the sea cucumbers were switched to an unsupplemented diet and C21 was confirmed to be capable of colonizing the intestine for at least 31 d after cessation of feeding. In conclusion, C21 was shown to successfully colonize the intestine of juvenile A. japonicus via dietary supplementation, and improve growth and digestive enzyme activity.展开更多
In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simo...In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simonii Carri6re (PSC) mature forests were se- lected in Horqin Sandy Land, and mobile dunes was set as a control (CK). Results show that PSM and PSC plantations can im- prove soil physicochemical properties and significantly increase microbiological activity in mobile dunes. Soil microbial abun- dance, microbial biomass carbon and enzyme activity show an order of PS〉PSM〉CK. Total soil microbial abundance in PSM and PSC was respectively 50.16 and 72.48 times more than that in CK, and the differences were significant among PSM, PSC and CK Soil microbial biomass carbon in PSM and PSC was respectively 23.67 and 33.34 times more than that in CK, and the difference was insignificant between PSM and PSC. Soil enzyme activity, including dehydrogenase (DEH), peroxidase (PER), protease (PRO), urease (URE) and cellobiohydrolase (CEL) in PSM and PSC were respectively 19.00 and 27.54, 4.78 and 9.89, 4.05 and 8.67, 29.93 and 37.46, and 9.66 and 13.42 times of that in CK. R sylvestris and P. simonii can effectively improve soil physico- chemical and microbiological properties in sandy dunes and fix mobile dunes in Horqin Sandy Land. The Cmic:C ratio is an appli- cable indicator to estimate soil stability and soil water availability, and based on an overall consideration of plantation stability and sustainability, R sylvestris is better than R simonii in fixing mobile dunes in sandy land.展开更多
基金Lorestan University,Iran,for its financial support。
文摘The digestive tract of termite(Microcerotermes diversus) contains a variety of lignocellulose-degrading bacteria with exocellulases enzyme activity, not found in the rumen, which could potentially improve fiber degradation in the rumen. The objectives of the current study were to determine the effect of inoculation of rumen fluid(RF) with three species of bacteria isolated from termite digestive tract, Bacillus licheniformis, Ochrobactrum intermedium, and Microbacterium paludicola, on in vitro gas production(IVGP), fermentation parameters, nutrient disappearance, microbial populations, and hydrolytic enzyme activities with fibrous wheat straw(WS) and date leaf(DL) as incubation substrate. Inoculation of RF with either of three termite bacteria increased(P<0.05) ammonia-N concentration compared with the control group(free of termite gut bacteria). Termite bacteria inoculation had no effect(P>0.05) on gas production characteristics, dry matter, organic matter and neutral detergent fiber disappearance, pH, and concentration and composition of volatile fatty acids. Population of proteolytic bacteria and protozoa, but not cellulolytic bacteria, were increased(P<0.05) when RF was inoculated with termite bacteria with both WS and DL substrates. Inoculation of RF with termite bacteria increased protease activity, while activities of carboxymethyl-cellulase, microcrystalline-cellulase, α-amylase and filter paper degrading activity remained unchanged(P>0.05). Overall, the results of this study indicated that transferring lignocellulose-degrading bacteria, isolated from digestive tract of termite, to rumen liquid increased protozoa and proteolytic bacteria population and consequently increased protease activity and ammonia-N concentration in vitro, however, no effect on fermentation and fiber degradation parameters were detected. These results suggest that the termite bacteria might be rapidly lysed by the rumen microbes before beneficial effects on the rumen fermentation process could occur.
基金supported by grants from the National Key R&D Program of China(2019YFC1606701)。
文摘Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.
基金financially supported by the National Natural Science Foundation of China(32102559)the Jiangsu Shuang Chuang Tuan Dui Program,China(JSSCTD202147)the Jiangsu Shuang Chuang Ren Cai Program,China(JSSCRC2021541)。
文摘Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.
基金funded by the Natural Science Foundation of China(No.41807041)the Science and Technology Research Project of Henan Province(242102111101)the Mechanical Design,Manufacturing,and Automation Key Discipline of Henan Province(JG[2018]No.119).
文摘The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.
基金This study received financial support from the Youth Talents Special Project of Yunnan Province,“Xingdian Talents Support Program”(XDYC-QNRC-2022-0203)Southwest Forestry University Scientific Research Start-Up Funds(112116).
文摘Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis.
文摘The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilizers have been applied to the soil to improve crop yields in China, which not only increases production cost but also reduces soil quality. Therefore, reasonable application of N fertilizer becomes a key problem after straw retention. This study aimed to assess the effects of applying maize straw with high quality alfalfa straw on mineral N content, microbial biomass and enzyme activity under controlled conditions. The effect of applying maize straw with alfalfa straw was compared with that of maize straw in combination with N fertilizer under the same C: N ratio (25:1). The laboratory incubation experiment consisted of four treatments: (1) soil with no addition (CK); (2) soil amended with maize straw (M); (3) soil amended with alfalfa straw and maize straw with an adjusted C: N ratio of 25:1 (MM); (4) soil amended with inorganic nitrogen fertilizer and maize straw with an adjusted C:N ratio of 25:1 (MF). The results showed that application of maize straw leaded to an N immobilization during the 270 d of incubation. Combined application of alfalfa and maize straw and or mineral N fertilizer alleviates the N immobilization and increase soil mineral N content. Compared to MF treatment, MM treatment prolonged N availability during the incubation. MM and MF treatments increased the soil microbial biomass carbon and nitrogen contents, and soil invertase and β-glycosidase activities. There was no difference between MM and M treatment in soil urease activity. MF treatment had significantly negative influence on soil urease activity compared with M treatment. The amount of added N significantly affected mineral N content, soil microbial biomass and enzyme activity. The mixture of alfalfa straw and maize straw sustains higher level of mineral N content, microbial biomass and enzyme activity as it had high N input compared to maize straw in combination with N fertilizer. It is concluded that alfalfa straw may be a better N source than N fertilizer in alleviating N immobilization caused by maize straw retention.
基金Supported by Key Project from National Spark Plan,China(2012GA820001)Special Project of Guizhou Provincial Science and Technology,China[Qiankehe Special Project(2011)6001)]+1 种基金"321"Efficient Planting Technique Integration and Demonstration of Vegetable from Technology Ombudsman,China[(2013)6061-1)]Guizhou Vegetable Industry Technique System Construction Program,China(GZCYTX2011-0101)~~
文摘To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient planting modes,and the variations of soil microbial flora and enzyme activities were analyzed. The soil microbial count and total bacteria of the vegetable efficient cultivation mode were significantly higher than that of the control (traditional planting mode) in each planting area,and the microbial diversity index was also improved to varying de- grees.The soil phosphatase,catalase and urease activities of the vegetable efficient planting mode were higher than that of the control.The soil catalase and urease activities were higher than that of the control by 1.37-1.44 and 1.51-2.80 times. Application of vegetable efficient planting mode in different regions will help to im- prove the soil quality in a given period.
文摘[Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentrations of exogenous cadmium (Cd) on the growth of sugarcane, the quantities of soil microorganisms and the activity of soil enzymes were studied. [Method] The plant height, stem di- ameter and cane yield of sugarcane, the soil microbial quantities and enzyme activi- ties were determined by using sugarcane as a material treated with different Cd concentrations (0, 25, 50, 100, 250 and 500 mg/kg) under potted conditions. IRe- suit] The results showed that the plant height, stem diameter and the yield of sug- arcane decreased with the increase of Cd concentration in the soil, and the higher the Cd concentration, the more obvious the inhibitory effect. The Cd contamination changed the enzyme activity, and the activities of urease and acid phosphatase sig- nificantly decreased with the increase of Cd concentration, especially when the Cd concentration reached 100 mg/kg. The sensitivity of the two soil enzymes to Cd ranked as urease〉acid phosphatase. Cd contamination also changed soil microbial quantities. Fungi, bacteria and actinomycetes significantly decreased at the Cd con- centration level of 100 mg/kg. There were significant and highly significant correla- tions between Cd contamination concentration and fungi, bacteria and actinomycetes, the activities of urease and acid phosphatase, plant height, stem diameter as well as cane yield. [Conclusion] Under the conditions of potted planted sugarcane, ex- ogenous Cd contamination affected the growth of sugarcane, the quantities of soil microorclanisms and soil enzyme activities to different degrees.
文摘The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with different last-season crops was in-vestigated at different growth stages in this study. The results showed the activity variation of the 3 enzymes differed in the 2 soils at different growth stages. The catalase activity in the arid red soil trended to decrease overal from the vigorous growing stage to harvesting stage; while it decreased gradual y in the rice soil until the harvesting stage. The phosphatase activity in the 2 soils al increased with the proceeding of growth period. The urease activity in the arid red soil decreased gradual y at different growth stages, but the variation of urease activity in rice soil was irregular. During the growth of flue-cured tobacco, the catalase and urease ac-tivity in the arid red soil increased first and then decreased, and the phosphatase activity increased gradual y. ln rice soil, the catalase activity increased first and then decreased; the phosphatase activity decreased first and then increased; the urease activity increased first, then decreased and increased last. The activity of al the en-zymes in the 2 soils showed significant differences compared to the control except some enzymes at the vigorous growing stage. lt was suggested the planting of flue-cured tobacco would affect greatly the soil enzyme activities.
基金Supported by the National Natural Science Foundation of China(41101484)Swiss National Science Foundation PZ00P2(142232)~~
文摘[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like to investigate the changes of the soil enzyme activity and microbial biomass at different growing stages of rape (Brassica juncea L.) at different soil vanadium concentrations (soil background value was 147 mg/kg, spiked with 0, 50, 100, 150, 250 and 500 mg/kg of exogenous vanadium). [Result] Among all enzymes examined, polyphenol oxidase was most sensitive to soil vanadium. Addition of 50 mg/kg vanadium decreased its activity up to 56% of the control probably due to the vanadium toxicity. In comparison, the ac- tivities of sucrase, urease and catalase was less affected by soil vanadium. Surpris- ingly, the activity of sucrase, urease and catalase at the rape seedling stage differed significantly from at the maturity stage, highlighting the potential impact of plant growth on the vanadium-soil enzyme interaction. Different soil vanadium concentra- tions led to increases of microbial biomass to different extents. However, the corre- lation between soil microbial biomass carbon and phosphorus with vanadium con- centrations was insignificant. This revealed that the presence of additional factors (eg. plant) affected soil microbial biomass carbon and phosphorus aside from soil vanadium. [Conclusion] Polyphenol oxidase may be considered as an indicator of soil vanadium contamination. Due to the highly complicated interaction between vanadium and soil biological activities during plant growth, more investigations are required to reveal the mechanisms beyond our findings here.
基金Supported by National Scientific and Technological Supporting Project(2008BADA4B04-09)Guangdong Province Scientific and Technological Project(2008A020100017)Guangdong Province Department of Finance Project[(2006)143]~~
文摘A pot experiment was conducted to study the influences of foliar application of glycine,alanine,lysine,and glutamic acid in 200 mg/kg or 500 mg/kg upon the quality and enzyme activity of flowering Chinese cabbage(Brassica parachinensis Bailey).The results showed that all the application of these four amino acids could increase the yield of flowering Chinese cabbage,significantly raise the content of soluble sugar,and reduce the accumulation of nitrate.The applications of three other amino acids except alanine can increase the content of soluble proteins and decrease the accumulation of oxalic acid.However,the application of amino acid has insignificant influences on the SPAD number of chlorophyll,and causes the decrease of Vitamin C content.Meanwhile,the application of amino acid can improve the activity of nitrate reductase(NR) and glutamate dehydrogenase(GDH) as well.It shows that the application of amino acid is beneficial to improve ammonia metabolism,reduce the accumulation of nitrate and oxalic acid,increase the content of soluble sugar and soluble proteins,and improve the quality of flowering Chinese cabbage.
基金supported by the International Cooperation Project of Zhejiang Province(No.2012C14031)Innovative Research Team Program of Zhejiang Province(No.2011R50025)
文摘Background: Colibacillosis caused by enterotoxigenic Escherichia coil (E. coil} results in economic losses in the poultry industry. Antibiotics are usually used to control colibacillosis, however, E. coli has varying degrees of resistance to different antibiotics. Therefore the use of probiotics is becoming accepted as an alternative to antibiotics. In this study, we evaluated the effects of Clostfidium butyricum (C. butyficum) on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Eschefichia coli (E. coil) K88. Methods: The chickens were randomly divided into four treatment groups for 28 days. Negative control treatment (NC) consisted of birds fed a basal diet without E. coil K88 challenge and positive control treatment (PC) consisted of birds fed a basal diet and challenged with E. coil K88. C. buO/ricum probiotic treatment (CB) consisted of birds fed a diet containing 2 x 107 cfu C. buO/ricum/kg of diet and challenged with E. coil K88. Colistin sulfate antibiotic treatment (CS) consisted of birds fed a diet containing 20 mg colistin sulfate/kg of diet and challenged with E. coil K88. Results: The body weight (BW) and average day gain (ADG) in the broilers of CB group were higher (P 〈 0.05) than the broilers in the PC group overall except the ADG in the 14-21 d post-challenge. The birds in CB treatment had higher (P 〈 0.05) concentration of tumor necrosis factor-a (TNF-a) at 3 and 7 d post-challenge, and higher (P 〈 0.05) concentration of interleukin-4 (IL-4) at 14 d post-challenge than those in the PC treatment group. The concentration of serum endotoxin in CB birds was lower (P 〈 0.05) at 21 d post-challenge, and the concentrations of serum diamine oxidase in CB birds were lower (P 〈 0.05) at 14 and 21 d post-challenge than in PC birds. Birds in CB treatment group had higher (P 〈 0.05) jejunum villi height than those in PC, NC, or CS treatment at 7, 14, and 21 d post-challenge. In comparison to PC birds, the CB birds had lower (P 〈 0.05) jejunum crypt depth during the whole experiment. The birds in CB or CS treatment group had higher (P 〈 0.05) activities of amylase and protease at 3, 7, and 14 d post-challenge, and higher (P 〈 0.05) activity of lipase at 3, 7 d post-challenge than PC birds.
文摘[Objective] This study aimed to investigate the effects of different exoge- nous hormones on the rooting of Syringa microphylla cuttings and the change in related enzymes activity during the rooting process. [Method] Three different exoge- nous hormones IBA, NAA and ABT, each with concentrations of 500, 1 000, 1 500 and 2 000 mg/L were used to treat S. microphylla cuttings, and changes in the ac- tivities of peroxidase (POD), poiyphenol oxidase (PPO) and indoleacetic acid oxidase (IAAO) during the rooting process were also investigated. [Result] The most appro- priate concentrations of IBA, ABT and NAA were 1 500, 1 000 and 1 000 mg/L, respectively, and the 1 500 mg/L IBA treatment exhibited the best effect on rooting. Throughout the rooting process, POD and PPO activities showed the same trends in the treatment groups as those in the control group, but the POD and PPO activi- ties in the treatment groups were increased significantly, with greater amplitude of variation; at the early stage, IAAO activity exhibited an opposite trend between the control group and the treatment groups, which increased slowly in the former, but decreased rapidly in the latter, and it was significantly lower in the treatment groups compared to the control; additionally, higher POD and IAAO activities were con- ducive to the induction of adventitious roots, and lower POD and IAAO activities fa- vored their formation and elongation. [Conclusion] This study has preliminarily clari- fied the rooting mechanism of S. microphylla cuttings.
基金SUT-OROG scholarshipthe Higher Education Promotion and National Research University Project of Thailand (NRU)the Office of the Higher Education Commission (FtR 06/2559) for funding support
文摘The objective of this study was to observe the forage yield, silage fermentative quality, anthocyanin stability, and antioxidant activity during the storage period and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover (PS) and sticky corn stover (SS). Forage yield of corn stover was weighed and ensiled with two treatments: (1) hybrid sticky waxy corn stover (control), and (2) hybrid purple waxy corn stover (treatment). Samples were stored in mini-silos for periods of 0, 7, 14, 21,42, 63, 84, and 105 d. The results showed that PS had significantly higher (P〈0.05) yields of dry matter (DM), organic matter (OM), gross energy (GE), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and total anthocyanins than that of the SS. Anthocyanin-rich purple corn stover silage (PSS) showed higher (P〈0.05) levels of DM and CP relative to the sticky corn stover silage (SSS). Although anthocyanin-rich PSS displayed a lower (P〈0.05) level of pelargonidin-3-glucoside (P3G), it had higher (P〈0.05) levels of peonidin (Peo) and pelargonidin (Pel) compared to the control. Delphinidin (Del) and malvidin (Mal) were not detected in SSS during the ensilage period; in PSS, Del was no longer detected after 7 d of ensilage. Specifically, total anthocyanins in anthocyanin-rich PSS decreased rapidly (P〈0.05) prior to 7 d of ensilage, and then remained at relatively stable (P〉0.05) constants. Compared to the anthocyanin-rich PSS, SSS displayed significantly higher (P〈0.05) pH value and ammonia nitrogen (NH3-N) content. Propionic acid (PA) at 0 d and butyric acid (BA) during the entire study period were not detected, whereas anthocyanin-rich PSS showed a higher (P〈0.05) level of lactic acid (LA) than that of the SSS. Compared with the SSS extract, anthocyanin-rich PSS extract showed a higher (P〈0.05) level of 2,2-diphenyl-1-picryihydrazyl (DPPH) scavenging activity and displayed a lower (P〈0.05) half maximal inhibitory concentration (IC50) value. Moreover, anthocyanin-rich PSS reduced (P〈0.05) gas production (GP), and displayed lower levels of immediately soluble fraction and ratio of acetic acid (AA) to PA at 12 h, but the other parameters were unaffected (P〉0.05) relative to the control. Taken together, the results indicated that: (1) anthocyanins could be stable in silage; (2) anthocyanin-rich PSS showed better silage fermentative quality and stronger antioxidant activity; and (3) anthocyanin-rich PSS had no negative effect on rumen fermentation parameters.
基金supported by China Agriculture Research System (No. CARS-48)the Major Special Science and Technology Projects in Shandong Province (No. 2016 YYSP016)+2 种基金the Ningbo Science and Technology Projects (No. 2017C110006)the Shandong Provincial Natural Science Foundation, China (No. ZR2015CQ021)the Fundamental Research Funds for the Central Universities (No. 201564018)
文摘The industrial processing of shrimp produces massive quantities of solid waste that is a notable source of animal protein, chitin, carotenoids, and other bioactive compounds that are not appropriately utilized. In the present study, chitin and protein extraction from shrimp head with autolysis and fermentation using Bacillus licheniformis were investigated. The results showed that when shrimp heads were autolyzed with a natural pH at 50℃ for 4 h, the total amino acid nitrogen in the supernatant was 5.01 mg mL^-1. Then, when a 50%(v/m) inoculum of the hydrolysate was incubated at 60℃ for 10 h, a deproteinization rate of 88.3% could be obtained. The fermented supernatant was processed into a dry protein powder, while the residues were demineralized by 10% citric acid for chitin. The recovered protein powder contained 5.5% moisture, 11.5% ash, and 66.7% protein, while the chitin contained 3.5% moisture, 2.1% ash, and 3.1% protein. In addition, amino acids, minerals, heavy metals, the degree of acetylation, microstructure, and Fourier-transform infrared(FT-IR) spectroscopy results were analyzed. Furthermore, the statistics of the large scale trial after treatment with 20 kg of shrimp heads were analyzed. Thus, this work made the shrimp waste utilization environmentally sound and valuable.
基金Supported by the Science Fund for Creative Research Groups (No.40821004)National Natural Science Foundation of China (No.40576073)+1 种基金Breeding Project of Shandong Province (China),National Key Technology Research and Development Program of China (No. 2006BAD09A02)the National High Technology Research and Development Program of China (863 Program) (No.2006AA100304 /2006AA10A411)
文摘The effect of water temperature on gut mass and digestive enzyme activity in sea cucumber Apostichopusjaponicus, including relative gut mass (RGM), amylase, lipase, pepsin and trypsin activities were studied at temperatures of 7, 14, 21, and 28℃ over a period of 40 days. Results show that RGM significantly decreased after 40 days at 21 ℃ and markedly decreased over the whole experiment period at 28℃; however, no significant effect of duration was observed at 7 or 14℃. At 14℃, trypsin activity significantly decreased over 10 and 20 days, then increased; amylase and trypsin activity significantly decreased after 40 days at 28℃. However, no significant effect of duration was found on amylase, pepsin or trypsin activities in the other temperature treatment groups. At 28℃, lipase activity peaked in 20 days and then markedly decreased to a minimum at the end of the experiment. On the other hand, pepsin activity at 28℃ continuously increased over the whole experimental period. Principle component analysis showed that sea cucumbers on day 40 in the 21℃ group and in the previous 20 days in the 28℃ group were in the prophase of aestivation. At 28℃, sea cucumbers aestivated at 30-40 days after the start of the experiment. It is concluded that the effect of temperature on the digestion ofA. japonicus is comparatively weak within a specific range of water temperatures and aestivation behavior is accompanied by significant changes in RGM and digestive enzyme activities.
基金supported by the Key Research Program of the Education Department of Sichuan Province (Nos. 2003A–032, 072A105)
文摘In order to identify the effects of drought stress on protective enzyme activity and physiological properties, four mulberry varieties, i.e.,'Nanye- 1', 'Yunsang- 1', 'Xinyizhilai' and 'Husang-32' in the Panxi Region of Sichuan Province, China, were selected. The activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in four mulberry varieties was determined. Soluble protein, soluble sugar, proline, net photosynthetic rate and transpiration rate of mulberry leaves were analyzed. The results show that during the early stages of drought stress, protective enzyme activities in four mulberry varieties continually increased. However, prolonged and intensified drought stress decreased their activities. After re-watering, they gradually returned to normal levels. Under drought stress and after re-watering, 'Nanye-l' and 'Yunsang-l' clearly showed smaller changes in soluble protein content than the 'Xinyizhilai' and 'Husang-32' varieties, whereas changes in their soluble sugar content were clearly greater than these last two varieties. When water deficit was protracted and intensified, 'Nanye-1' and 'Yunsang-1' still showed higher net photosynthetic, transpiration rates and water-use efficiency than 'Xinyizhilai' and 'Husang-32'.
文摘The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A412)
文摘The effects of a diet containing Hanseniaspora opuntiae C21 on growth and digestive enzyme activity were estimated in juvenile Apostichopus japonicus. Groups of sea cucumbers were fed diets containing H. opuntiae C21 at 0(control), 10 4, 10 5, and 10 6 CFU(colony-forming units)/g feed. Results showed that after 45 d the specific growth rate(SGR) of sea cucumbers fed a C21-supplemented diet at 10 4 CFU/g feed was significantly higher than that of the control( P < 0.05). Intestinal trypsin and lipase activities were significantly enhanced by C21 administration at 10 4 and 10 5 CFU/g feed compared with the control( P < 0.05). After feeding for 23–42 d, C21 was demonstrated by denaturing gradient gel electrophoresis to be present in the intestine of sea cucumbers. In addition, after feeding the C21-supplemented diets for 15 d, the sea cucumbers were switched to an unsupplemented diet and C21 was confirmed to be capable of colonizing the intestine for at least 31 d after cessation of feeding. In conclusion, C21 was shown to successfully colonize the intestine of juvenile A. japonicus via dietary supplementation, and improve growth and digestive enzyme activity.
基金supported by the National Science and Technology Support Program(2011BAC07B02)Young Scientists Foundation of Chinese Academy of Sciences(CAS)(Y251951001)National Natural Science Foundation of China(41171414and31170413) from Coldand Arid Regions Environmental and Engineering Research Institute,CAS
文摘In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simonii Carri6re (PSC) mature forests were se- lected in Horqin Sandy Land, and mobile dunes was set as a control (CK). Results show that PSM and PSC plantations can im- prove soil physicochemical properties and significantly increase microbiological activity in mobile dunes. Soil microbial abun- dance, microbial biomass carbon and enzyme activity show an order of PS〉PSM〉CK. Total soil microbial abundance in PSM and PSC was respectively 50.16 and 72.48 times more than that in CK, and the differences were significant among PSM, PSC and CK Soil microbial biomass carbon in PSM and PSC was respectively 23.67 and 33.34 times more than that in CK, and the difference was insignificant between PSM and PSC. Soil enzyme activity, including dehydrogenase (DEH), peroxidase (PER), protease (PRO), urease (URE) and cellobiohydrolase (CEL) in PSM and PSC were respectively 19.00 and 27.54, 4.78 and 9.89, 4.05 and 8.67, 29.93 and 37.46, and 9.66 and 13.42 times of that in CK. R sylvestris and P. simonii can effectively improve soil physico- chemical and microbiological properties in sandy dunes and fix mobile dunes in Horqin Sandy Land. The Cmic:C ratio is an appli- cable indicator to estimate soil stability and soil water availability, and based on an overall consideration of plantation stability and sustainability, R sylvestris is better than R simonii in fixing mobile dunes in sandy land.