As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization sc...As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced.展开更多
The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuou...The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha^-1 yr^-1; P, 45 kg triple superphosphate-P205 ha^-1 yr^-1; K, 75 kg potassium chloride-K20 ha^-1 yr^-1; and pig manure, 22 500 kg ha^-1 yr^-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was significantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no significant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was significantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not significantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and significantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was significantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not significantly correlated with one another. No significant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.展开更多
Use of saline water in irrigated agriculture has become an important means for alleviating water scarcity in arid and semi-arid regions. The objective of this field experiment was to evaluate the effects of irrigation...Use of saline water in irrigated agriculture has become an important means for alleviating water scarcity in arid and semi-arid regions. The objective of this field experiment was to evaluate the effects of irrigation water salinity and N fertilization on soil physicochemical and biological properties related to nitrification and denitrification. A 3×2 factorial design was used with three levels of irrigation water salinity(0.35, 4.61 and 8.04 d S m-1) and two N rates(0 and 360 kg N ha^(-1)). The results indicated that irrigation water salinity and N fertilization had significant effects on many soil physicochemical properties including water content, salinity, p H, NH_4-N concentration, and NO_3-N concentration. The abundance(i.e., gene copy number) of ammonia-oxidizing archaea(AOA) was greater than that of ammonia-oxidizing bacteria(AOB) in all treatments. Irrigation water salinity had no significant effect on the abundance of AOA or AOB in unfertilized plots. However, saline irrigation water(i.e., the 4.61 and 8.04 d S m-1 treatments) reduced AOA abundance, AOB abundance and potential nitrification rate in N fertilized plots. Regardless of N application rate, saline irrigation water increased urease activity but reduced the activities of both nitrate reductase and nitrite reductase. Irrigation with saline irrigation water significantly reduced cotton biomass, N uptake and yield. Nitrogen application exacerbated the negative effect of saline water. These results suggest that brackish water and saline water irrigation could significantly reduce both the abundance of ammonia oxidizers and potential nitrification rates. The AOA may play a more important role than AOB in nitrification in desert soil.展开更多
To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was c...To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility.展开更多
Application of slow-release fertilizer(SF)is a nutrient-management measure aimed at improving maize nutrient use and yield and saving labor cost.One-time application of SF at sowing usually results in nutrient deficie...Application of slow-release fertilizer(SF)is a nutrient-management measure aimed at improving maize nutrient use and yield and saving labor cost.One-time application of SF at sowing usually results in nutrient deficiency during the post-silking stage,owing to the long growth period of spring maize.This study was conducted to investigate the effects on spring maize of SF application stage(zero,three-,and six-leaf stages,designated as SF0,SF3,and SF6,respectively)on grain yield,total soil rhizosphere nitrogen(N)content,and root activity,in comparison with the conventional fertilization mode(CF,application of compound fertilizer at sowing time,and topdressing urea at six-leaf and tasseling stages)at the same fertilization level as the control.Compared with no fertilization(F0)and CF,SF increased grain number and weight.The maize cultivars Suyu 30(SY30)and Jiangyu 877(JY877)produced the highest grain yield and net return under SF6 treatment over the three years.SF6 increased enzymatic activities including oxidoreductase,hydrolase,transferase,and lyase in rhizosphere soil at silking(R1)and milking stages(R3).SF6 increased the total N contents of rhizosphere soil by 7.1%at R1 and 9.2%R3 stages compared with SF0.The activities of antioxidant enzymes in roots were increased under SF6 treatments at R1and R3.The mean root activities of SF0,SF3,and SF6 increased by 7.1%,12.8%,and 20.5%compared with CF at R1 and by 8.8%,13.0%,and 23.5%at R3.Delaying the application time of SF could increase grain yield by increasing total N content of rhizosphere soil,delaying root senescence,and increasing root activity at the late reproductive stage.Applying SF at the six-leaf stage is recommended as an effective fertilization strategy for the sustainable production of spring maize in southern China.展开更多
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity...[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.展开更多
Continuous cropping obstacles hamper the efficient growth and yield of Szechuan pepper,Zanthoxylum simulans.The current study investigated the impact of different levels of bioorganic fertilizer on the leaf physiologi...Continuous cropping obstacles hamper the efficient growth and yield of Szechuan pepper,Zanthoxylum simulans.The current study investigated the impact of different levels of bioorganic fertilizer on the leaf physiological and photosynthetic characteristics of Z.simulans to provide a theoretical reference for continuous Z.simulans crop cultivation.A bioorganic fertilizer was used to treat seedlings growing in 25-year-old continuous cropping soil.Five fertilizer treatments were applied.The impacts of the treatments on the activity of defense enzyme and photosynthetic parameters of Z.simulans leaves were determined.The different concentrations of bioorganic fertilizer reduced to varying degrees the malondialdehyde(MDA)content and intercellular CO2 concentration(Ci),and increased the activity of peroxidase(POD),superoxide dismutase(SOD),and ascorbate peroxidase(APX),as well as the chlorophyll content,net photosynthetic rate(Pn),stomatal conductance(Gs)and transpiration rate(Tr)of Z.simulans leaves.The results showed that most significant increases or decreases were achieved with 100 g/L bioorganic fertilizer(Y2).Thus,the application of bioorganic fertilizer at a rate of 100 g/L can significantly improve the activity of relevant defense enzymes and photosynthetic parameters of Z.simulans,and reduce the MDA content,enhancing the stress resistance of the plants,promoting their growth and addressing,to some extent,obstacles associated with continuous cultivation.展开更多
The toxic effect of fertilizer Diammonium phosphate resulted in alterations of 5'-Nucleotidase activity of tissues liver, kidney and muscles offish C. batrachus at varying intervals and exposures. Alterations in 5...The toxic effect of fertilizer Diammonium phosphate resulted in alterations of 5'-Nucleotidase activity of tissues liver, kidney and muscles offish C. batrachus at varying intervals and exposures. Alterations in 5'-Nuclcotidase activity of body organs gave an idea of the toxicity caused by the fertilizer. Thus the enzyme 5'-Nucleotidase can be used to monitor the pollution in aquatic ecosystem.展开更多
[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvemen...[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.展开更多
This paper study the effect of nitrogen (N, X1), phosphorus (P, X2) and potassium (K, X3) in different amounts on crude protein, soluble sugar, total flavonoid and 1-deoxynojirimycin contents in mulberry leaves,...This paper study the effect of nitrogen (N, X1), phosphorus (P, X2) and potassium (K, X3) in different amounts on crude protein, soluble sugar, total flavonoid and 1-deoxynojirimycin contents in mulberry leaves, with mulberry trees in spring and autumn as the material and as per "3414" experimental design. The results showed that the qualities and active substance content of mulberry leaves changed from increasing to decreasing with its development; crude protein and solu-ble sugar achieved the peak on August 20; total flavonoid and 1-deoxynojirimycin was the highest on May 15. Fertilizations with N, P and K fertilizers at different amounts had significant effects on quality of mulberry leaf and content of active substances. Specifically, as fertilizer amount increased, the content of active sub- stances grew dramatically and achieved the highest at level 2 (X^2X=X~_). Based on fertilizer effect functions of objective yield, the recommended amounts of N, P and K fertilizers based on crude protein, soluble sugar, flavonoid content and DNJ in test sites were 718.46, 220.11 and 305.23 kg/hm2, when the highest of crude protein in mulberry leaf was 1 813.83 kg/hm2. When N, P and K fertilizers were recommended at 666.54, 204.41 and 243.18 kg/hm2, soluble sugar in mulberry leaf achieved the peak at 1 042.65 kg/hm2. When N, P and K fertilizers were at 675.96, 326.49 and 462.90 kg/hm2, flavonoid content achieved the maximum at 147.90 kg/hm2. When N, P and K fertilizers were at 720.9, 225.11 and 323.63 kg/hm2, DNJ content was the highest at 13.55 kg/hm2.展开更多
Comparisons of activation rates and fertilization rates were made among oocytes at different ages. Results showed that oocytes at different ages had different activation and fertilization rates when stimulated by sper...Comparisons of activation rates and fertilization rates were made among oocytes at different ages. Results showed that oocytes at different ages had different activation and fertilization rates when stimulated by sperm or ethanol. Oocytes at 15~24 h after the injection of hCG were readily activated by 8% ethanol. The activation rate of oocytes increased with the age of oocytes, up to the highest average of 81.6%, but decreased after 20 h posthCG. Oocytes at 20 h posthCG exhibited the highest immediate cleavage rate(48.0%) after being stimulated by ethanol. On the other hand, 13~15 h oocytes exhibited higher fertilization rates, and the older oocytes were more difficult to be fertilized by sperm in vitro. These suggest that oocytes can be activated in different ways; the mechanism of fertilization might be different from that of activation; and in vitro fertilization is more dependent on oocyte age.展开更多
Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil ...Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil enzyme activities in order to illustrate the function of soil microbial properties as bio-indicators of soil health. In this study, microbial biomass C and N contents (Cmic & Nmic), soil enzyme activities, and soil fertility with different fertilizer regimes were carried out based on a 15-year long-term fertilizer experiment in Drab Fluvo-aquic soil in Changping County, Beijing, China. At this site, 7 different treatments were established in 1991. They were in a wheat-maize rotation receiving either no fertilizer (CK), mineral fertilizers (NPK), mineral fertilizers with wheat straw incorporated (NPKW), mineral fertilizers with incremental wheat straw incorporated (NPKW+), mineral fertilizers plus swine manure (NPKM), mineral fertilizers plus incremental swine manure (NPKM+) or mineral fertilizers with maize straw incorporated (NPKS). In different fertilization treatments Cmic changed from 96.49 to 500.12 mg kg^-1, and Nmic changed from 35.89 to 101.82 mg kg^-1. Compared with CK, the other treatments increased Cmic & Nmic, Cmic/Corg (organic C) ratios, Cmic/Nmic, urease activity, soil organic matter (SOM), soil total nitrogen (STN), and soil total phosphorus (STP). All these properties in treatment with fertilizers input NPKM+ were the highest. Meantime, long-term combined application of mineral fertilizers with organic manure or crop straw could significantly decrease the soil pH in Fluvo-aquic soil (the pH around 8.00 in this experimental soil). Some of soil microbial properties (Cmic/Nmic, urease activity) were positively correlated with soil nutrients. Cmic/Nmic was significantly correlated with SOM and STN contents. The correlation between catalase activity and soil nutrients was not significant. In addition, except of catalase activity, the soil pH in this experiment was negatively correlated with soil microbial properties. In conclusion, soil microbial properties reflect changes of soil quality and thus can be used as bio-indicators of soil health.展开更多
The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in He...The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2.展开更多
We compared chemical and biological properties of soils in organically and conventionally fertilized apple orchards in Nagano Prefecture (one of the major apple producing regions in Japan). Five apple orchards with di...We compared chemical and biological properties of soils in organically and conventionally fertilized apple orchards in Nagano Prefecture (one of the major apple producing regions in Japan). Five apple orchards with different fertilizer management systems were used for this study. The total carbon and total nitrogen contents were higher in the organically fertilized orchard, while the total phosphorus and total potassium were at similar levels in both organically and conventionally fertilized orchards. The bacterial biomass did not differ between the two orchards, but the N circulation activity was clearly higher in the organically fertilized orchard from April to December. Total carbon from 50,000 to 60,000 mg/kg, total nitrogen at about 3000 to 4000 mg/kg, and a C/N ratio of 15 - 20 were suggested to be suitable conditions for a high level of apple production under an organic fertilizer management system.展开更多
Objective To explore the role of urokinase-type plasminogen activator(uPA) in precontact sperm-egg communication and fertility of mice in vitro. Methods Firstly, sperm chemotaxis (SC) induced by uPA was assayed by...Objective To explore the role of urokinase-type plasminogen activator(uPA) in precontact sperm-egg communication and fertility of mice in vitro. Methods Firstly, sperm chemotaxis (SC) induced by uPA was assayed by measuring the sperm densities in capillaries with a descending gradient or no gradient of uPA respectively. Secondly, the role of uPAR that exists in sperm plasma membrane in SC was studied by examining the change of sperm density in capillary after incubating spermatozoa with anti-uPAR antibody. Thirdly, SC induced by eggs, which had been treated with uPA, PAl-1 and anti-uPAR beforehand respectively, was assayed to study the role of uPA in PSEC. Lastly, the fertilization capability of spermatozoa treated with uPA was examined by counting the number of fertilized eggs. Results 1)The density of spermatozoa that migrated down the gradient of uPA into the capillary was significantly lower than that into the capillary containing no-gradient uPA. 2) When uPAR of spermatozoa was inhibited by anti-uPAR antibody, the density of spermatozoa that migrated into the capillary with ascending gradient of uPA decreased correspondingly. 3) The density of spermatozoa attracted by eggs, which were treated with uPA beforehand, increased significantly than that of attracted by non-treated eggs. On the contrary, the sperm density decreased correspondingly when the egg was treated with PAI-1. 4) The number of fertilized eggs increased significantly after the spermatozoa used here was treated with uPA beforehand. Conclusion uPA could induce SC of mice sperm in vitro through the uPAR on its membrane, enhance the capability of egg inducing SC, and promote spermatozoa to fertilize eggs. Thus, uPA may act as an attractant in PSEC, increase the chance encounter of spermatozoa and eggs, therefore, enhance the fertility success correspondingly. This study, in some degree, provides an evidence that uPA may be used as a new medicine and diagnostic reagent for male infertility.展开更多
[Objectives]This study was conducted to explore the effects of using fermented organic fertilizers such as cow manure on the activity of selenium in the soil.[Methods]The project team applied the organic fertilizer pr...[Objectives]This study was conducted to explore the effects of using fermented organic fertilizers such as cow manure on the activity of selenium in the soil.[Methods]The project team applied the organic fertilizer prepared by fermenting cow manure and other raw materials to activate selenium in the soil at two dragon fruit orchard bases in Shilong Town,Guiping City and Dingdang Town,Long an County,and carried out many years of experiments.[Results]The contents of available selenium in the two experimental orchards in Shilong Town and Dingdang Town increased by 10%and 5%,respectively,and the selenium contents in dragon fruit increased by 228.6%and 200.0%,respectively.[Conclusions]The application of fermented organic fertilizers such as cow manure can increase available selenium content in the soil,thereby increasing the selenium content of dragon fruit.展开更多
The gross alpha (α) and beta (β) activities and trace heavy elemental concentrations have been determined in Single Super Phosphate (SSP) and Nitrogen Phosphorous Potassium (NPK) fertilizers samples used for agricul...The gross alpha (α) and beta (β) activities and trace heavy elemental concentrations have been determined in Single Super Phosphate (SSP) and Nitrogen Phosphorous Potassium (NPK) fertilizers samples used for agricultural purposes in Nigeria. Cultivated farm soil samples from two regions (north and south) in the country and samples of phosphate rocks were also analyzed for gross α and β radioactivity and elemental concentrations. The beta activity concentration in the NPK (15-15-15) fertilizers was found to vary from 2410.0 ± 80.0 Bq·kg–1 to 4560 ± 140.0 Bq·kg–1, between 1340.0 ± 70.0 Bq·kg–1 and 1440.0 ± 70.0 Bq·kg–1 in the Single Super phosphate fertilizers while in the farm soil it ranged between 360.0 ± 40.0 Bq·kg–1 to 570.0 ± 50.0 for the north samples and 200.0 ± 50.0 to 230.0 ± 20 Bq·kg–1 for the south samples. The alpha activities in the NPK fertilizers was found to vary from 20.0 ± 10.0 to 90.0 ± 20.0 Bq·kg–1, in the SSP it varied from 60.0 ± 20.0 to 100.0 ± 20.0 Bq·kg–1 while in the soil samples it varied from 8.0 ± 6.0 to 40.0 ± 10.0展开更多
In this study, the potential effects of palm kernel oil (PKO), pineapple peels derived-activated carbon (PPAC) and NPK fertilizer (20:10:10) as amendment agents on the natural bioattenuation of 2,6-dichlorophenol (2,6...In this study, the potential effects of palm kernel oil (PKO), pineapple peels derived-activated carbon (PPAC) and NPK fertilizer (20:10:10) as amendment agents on the natural bioattenuation of 2,6-dichlorophenol (2,6-DCP) in tropical agricultural soil were investigated. The effect of PPAC dosage on 2,6-DCP biodegradation was also studied. Column reactors containing soil were spiked with 2,6-dichlorophenol (2,6-DCP) wastewater (300 mg/l) and amended with PKO, NPK fertilizer and PPAC alone or in combinations. The rates of 2,6-DCP biodegradation were studied for a remediation period of 42 days under laboratory conditions. The results showed that there was a positive relationship between the rate of 2,6-DCP biodegradation, bacterial growth rate and presence of NPK fertilizer and PPAC (alone or in combination) in soil column microcosms contaminated with 2,6-DCP. The 2,6-DCP biodegradation data fitted well to the first-order kinetic model. The model revealed that 2,6-DCP contaminated-soil microcosms amended with NPK fertilizer and PPAC (alone or in combination) had higher biodegradation rate constants (k) as well as lower half-life times (t1/2) than soil column microcosms amended with PKO and unamended soil (natural attenuation) remediation system. Thus, the use of combined NPK fertilizer and activated carbon (NPK + PPAC) to enhance 2,6-DCP degradation in the soil could be one of the severally sought bioremediation strategies of remediating natural ecosystem (environment) contaminated with organic chemicals.展开更多
The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer c...The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent.展开更多
Soybean (Glycine max: Fabaceae) is a mycotrophic (mycorrhizal) crop grown commercially for human consumption. Seven different fertilizer mixtures, namely cow dung, coir dust, mush room medium waste, saw dust, com...Soybean (Glycine max: Fabaceae) is a mycotrophic (mycorrhizal) crop grown commercially for human consumption. Seven different fertilizer mixtures, namely cow dung, coir dust, mush room medium waste, saw dust, compost, decaying leaves and field soil with standard dose of NPK (control) were used for this experiment. The variety used was PM 25. Soil microbial activity was measured using CO2 evolution method. The experiment was carried out as a complete randomized block design with five replicates at the rate of eight plants per replicate. Average number of leaves on 25-day and 45-day old plants, shoot-length, root-length, number of pods per plant, wet weight of pod per plant, dry weight of pod per plant, plant wet weight, plant dry weight and seed dry weight per pod were measured. All management practices were conducted according to recommendations of the Department of Agriculture from seed germination to harvesting. Data were analyzed using SAS program (9.1.3). Highest number of pods/plant (100, 124, 102, 106) and dry-seed-weight in g/plant (12, 14.8, 12, 12) were recorded in those grown in cow dung, compost, decaying leaves and inorganic mixture (control) whereas the lowest pod production (8.7 pods/plant) and seed dry weight (1.0 g/plant) was recorded in saw dust. Instead of inorganic fertilizer there is possibility to use organic potting mixtures like compost and decaying leaves which gave a significant difference in crop productivity as compared to other treatments. Significantly highest mean microbial activity was observed in potting media filled with coir dust.展开更多
基金Supported by Natural Science Foundation of Shanxi Province(2014011001-4)~~
文摘As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced.
基金supported by the National Natural Science Foundation of China (41261074)the Foundation of Educational Department of Jiangxi Province, China (GJJ12605)
文摘The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha^-1 yr^-1; P, 45 kg triple superphosphate-P205 ha^-1 yr^-1; K, 75 kg potassium chloride-K20 ha^-1 yr^-1; and pig manure, 22 500 kg ha^-1 yr^-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was significantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no significant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was significantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not significantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and significantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was significantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not significantly correlated with one another. No significant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.
基金funded by the National Natural Science Foundation of China (31360504)the Innovative Research Foundation for Excellent Young Scientists of Xinjiang Production and Construction Crops, China (2014CD002)
文摘Use of saline water in irrigated agriculture has become an important means for alleviating water scarcity in arid and semi-arid regions. The objective of this field experiment was to evaluate the effects of irrigation water salinity and N fertilization on soil physicochemical and biological properties related to nitrification and denitrification. A 3×2 factorial design was used with three levels of irrigation water salinity(0.35, 4.61 and 8.04 d S m-1) and two N rates(0 and 360 kg N ha^(-1)). The results indicated that irrigation water salinity and N fertilization had significant effects on many soil physicochemical properties including water content, salinity, p H, NH_4-N concentration, and NO_3-N concentration. The abundance(i.e., gene copy number) of ammonia-oxidizing archaea(AOA) was greater than that of ammonia-oxidizing bacteria(AOB) in all treatments. Irrigation water salinity had no significant effect on the abundance of AOA or AOB in unfertilized plots. However, saline irrigation water(i.e., the 4.61 and 8.04 d S m-1 treatments) reduced AOA abundance, AOB abundance and potential nitrification rate in N fertilized plots. Regardless of N application rate, saline irrigation water increased urease activity but reduced the activities of both nitrate reductase and nitrite reductase. Irrigation with saline irrigation water significantly reduced cotton biomass, N uptake and yield. Nitrogen application exacerbated the negative effect of saline water. These results suggest that brackish water and saline water irrigation could significantly reduce both the abundance of ammonia oxidizers and potential nitrification rates. The AOA may play a more important role than AOB in nitrification in desert soil.
基金Supported by National Modern Agricultural Industrial Technology System(CARS-02-69)Major Agriculture Science Foundation of Upland Grain Crops Breeding of Zhejiang Province(2016C02050-9-1)Project for Training of Youth Talents of Zhejiang Academy of Agricultural Sciences(2015)
文摘To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility.
基金the financial support of the National Key Research and Development Program of China(2016YFD0300109)National Natural Science Foundation of China(32101828,32071958)+3 种基金Natural Science Foundation of Jiangsu Province(BK20200952)the Open Project Program of Joint International Research Laboratory of Agriculture and Agri-Product Safety(JILAR-KF202010)the Jiangsu Agricultural Industry Technology System of China(JATS[2020]444)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Application of slow-release fertilizer(SF)is a nutrient-management measure aimed at improving maize nutrient use and yield and saving labor cost.One-time application of SF at sowing usually results in nutrient deficiency during the post-silking stage,owing to the long growth period of spring maize.This study was conducted to investigate the effects on spring maize of SF application stage(zero,three-,and six-leaf stages,designated as SF0,SF3,and SF6,respectively)on grain yield,total soil rhizosphere nitrogen(N)content,and root activity,in comparison with the conventional fertilization mode(CF,application of compound fertilizer at sowing time,and topdressing urea at six-leaf and tasseling stages)at the same fertilization level as the control.Compared with no fertilization(F0)and CF,SF increased grain number and weight.The maize cultivars Suyu 30(SY30)and Jiangyu 877(JY877)produced the highest grain yield and net return under SF6 treatment over the three years.SF6 increased enzymatic activities including oxidoreductase,hydrolase,transferase,and lyase in rhizosphere soil at silking(R1)and milking stages(R3).SF6 increased the total N contents of rhizosphere soil by 7.1%at R1 and 9.2%R3 stages compared with SF0.The activities of antioxidant enzymes in roots were increased under SF6 treatments at R1and R3.The mean root activities of SF0,SF3,and SF6 increased by 7.1%,12.8%,and 20.5%compared with CF at R1 and by 8.8%,13.0%,and 23.5%at R3.Delaying the application time of SF could increase grain yield by increasing total N content of rhizosphere soil,delaying root senescence,and increasing root activity at the late reproductive stage.Applying SF at the six-leaf stage is recommended as an effective fertilization strategy for the sustainable production of spring maize in southern China.
基金Supported by Key R&D Program of the Ministry of Science and Technology of China(2017YFC0505102-4)。
文摘[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.
基金This study was supported by the Central Committee for guiding the local science and technology development sub-project“Study on the Structural Adjustment and Optimization Research and Platform Construction of the Characteristic Economic Forest and Pepper in Longnan”,and thanks for the International Science Editing(http://www.Internationalscienceediting.com)for editing this manuscript.
文摘Continuous cropping obstacles hamper the efficient growth and yield of Szechuan pepper,Zanthoxylum simulans.The current study investigated the impact of different levels of bioorganic fertilizer on the leaf physiological and photosynthetic characteristics of Z.simulans to provide a theoretical reference for continuous Z.simulans crop cultivation.A bioorganic fertilizer was used to treat seedlings growing in 25-year-old continuous cropping soil.Five fertilizer treatments were applied.The impacts of the treatments on the activity of defense enzyme and photosynthetic parameters of Z.simulans leaves were determined.The different concentrations of bioorganic fertilizer reduced to varying degrees the malondialdehyde(MDA)content and intercellular CO2 concentration(Ci),and increased the activity of peroxidase(POD),superoxide dismutase(SOD),and ascorbate peroxidase(APX),as well as the chlorophyll content,net photosynthetic rate(Pn),stomatal conductance(Gs)and transpiration rate(Tr)of Z.simulans leaves.The results showed that most significant increases or decreases were achieved with 100 g/L bioorganic fertilizer(Y2).Thus,the application of bioorganic fertilizer at a rate of 100 g/L can significantly improve the activity of relevant defense enzymes and photosynthetic parameters of Z.simulans,and reduce the MDA content,enhancing the stress resistance of the plants,promoting their growth and addressing,to some extent,obstacles associated with continuous cultivation.
文摘The toxic effect of fertilizer Diammonium phosphate resulted in alterations of 5'-Nucleotidase activity of tissues liver, kidney and muscles offish C. batrachus at varying intervals and exposures. Alterations in 5'-Nuclcotidase activity of body organs gave an idea of the toxicity caused by the fertilizer. Thus the enzyme 5'-Nucleotidase can be used to monitor the pollution in aquatic ecosystem.
基金Supported by the grands from National Sugarcane Industry Technology System(CARS-20-3-5)Science and Technology Development Foundation of Guangxi Academy of Agricultural Science(GNK 2015JZ31 GNK 2013JZ13,200905Zji)~~
文摘[Objective] This study was conducted to expound the fertility improvement effect in continuous-cropping sugarcane field and provide reference for establishment of rational sugarcane fertilization system and improvement of soil quality in continuous-cropping sugarcane field. [Method] The soil in the experimental region is latosolic red soil which was planted with sugarcane for 11 years continuously, and 8 treatments including sole application of chemical fertilizers, sole application of organ- ic fertilizer, and combined application of organic fertilizer and chemical fertilizers were designed according to different fertilization measures. The effects of different fertilization treatments on soil microbial biomass, soil enzyme activities and related fertility factors were determined. [Result} Different fertilization treatments all showed soil microbial biomass N, C and P and activities of soil acid phosphatase, catalase, sucrase and urease higher than the CK. Soil microbial biomass N increased by 5.56%-67.13%, soil microbial biomass C increased by 4.01%-20.40%, and soil mi- crobial biomass P increased by 6.39%-67.02%. The activity of acid phosphatase was improved by 12.96%-35.19%, the activity of catalase was improved by 18.24% -78.93%, the activity of sucrase was improved by 3.00%-42.00%, and the activity of urease was improved by 1.21%-23.43%. However, the soil nutrients of different fertilization treatments increased non-significantly (P〉0.05). Soil microbial biomass N, C and P and activities of acid phosphatase, catalase and urease were in significant (P〈0.05) or very significant correlation (P〈0.01) with contents of soil rapidly available P, rapidly available K and total N. [Conclusion] The evaluation of improvement of soil fertility in continuous-cropping sugarcane field using soil microbial biomass and enzyme activities as indexes is more comprehensive and sensitive.
基金Supported by Crop Breeding Key Program of the 12th Five-year Plan(No.2011yzgg-1302-01)Sichuan Academy of Agricultural Sciences(2011LWJJ-008)+1 种基金Sichuan Financial Genetic Engineering(2011JYGC10-027-02)Special Fund of Modern Agricultural Industry Technology System Construction(No.CARS-22)~~
文摘This paper study the effect of nitrogen (N, X1), phosphorus (P, X2) and potassium (K, X3) in different amounts on crude protein, soluble sugar, total flavonoid and 1-deoxynojirimycin contents in mulberry leaves, with mulberry trees in spring and autumn as the material and as per "3414" experimental design. The results showed that the qualities and active substance content of mulberry leaves changed from increasing to decreasing with its development; crude protein and solu-ble sugar achieved the peak on August 20; total flavonoid and 1-deoxynojirimycin was the highest on May 15. Fertilizations with N, P and K fertilizers at different amounts had significant effects on quality of mulberry leaf and content of active substances. Specifically, as fertilizer amount increased, the content of active sub- stances grew dramatically and achieved the highest at level 2 (X^2X=X~_). Based on fertilizer effect functions of objective yield, the recommended amounts of N, P and K fertilizers based on crude protein, soluble sugar, flavonoid content and DNJ in test sites were 718.46, 220.11 and 305.23 kg/hm2, when the highest of crude protein in mulberry leaf was 1 813.83 kg/hm2. When N, P and K fertilizers were recommended at 666.54, 204.41 and 243.18 kg/hm2, soluble sugar in mulberry leaf achieved the peak at 1 042.65 kg/hm2. When N, P and K fertilizers were at 675.96, 326.49 and 462.90 kg/hm2, flavonoid content achieved the maximum at 147.90 kg/hm2. When N, P and K fertilizers were at 720.9, 225.11 and 323.63 kg/hm2, DNJ content was the highest at 13.55 kg/hm2.
文摘Comparisons of activation rates and fertilization rates were made among oocytes at different ages. Results showed that oocytes at different ages had different activation and fertilization rates when stimulated by sperm or ethanol. Oocytes at 15~24 h after the injection of hCG were readily activated by 8% ethanol. The activation rate of oocytes increased with the age of oocytes, up to the highest average of 81.6%, but decreased after 20 h posthCG. Oocytes at 20 h posthCG exhibited the highest immediate cleavage rate(48.0%) after being stimulated by ethanol. On the other hand, 13~15 h oocytes exhibited higher fertilization rates, and the older oocytes were more difficult to be fertilized by sperm in vitro. These suggest that oocytes can be activated in different ways; the mechanism of fertilization might be different from that of activation; and in vitro fertilization is more dependent on oocyte age.
基金funded by the National Natural Science Foundation of China(30471012)the 973 Priority Fund under the auspices of the Ministry of Science and Technology,China(2001CCB00800,2003CCB00300)+1 种基金the Special Fund for the Chinese State-Level Academy's Scientific Research(2007-37)the Fund for the Elitist of the Chinese Academy of Agricultural Sciences(CAAS).
文摘Soil health is important for the sustainable development of terrestrial ecosystem. In this paper, we studied the relationship between soil quality and soil microbial properties such as soil microbial biomass and soil enzyme activities in order to illustrate the function of soil microbial properties as bio-indicators of soil health. In this study, microbial biomass C and N contents (Cmic & Nmic), soil enzyme activities, and soil fertility with different fertilizer regimes were carried out based on a 15-year long-term fertilizer experiment in Drab Fluvo-aquic soil in Changping County, Beijing, China. At this site, 7 different treatments were established in 1991. They were in a wheat-maize rotation receiving either no fertilizer (CK), mineral fertilizers (NPK), mineral fertilizers with wheat straw incorporated (NPKW), mineral fertilizers with incremental wheat straw incorporated (NPKW+), mineral fertilizers plus swine manure (NPKM), mineral fertilizers plus incremental swine manure (NPKM+) or mineral fertilizers with maize straw incorporated (NPKS). In different fertilization treatments Cmic changed from 96.49 to 500.12 mg kg^-1, and Nmic changed from 35.89 to 101.82 mg kg^-1. Compared with CK, the other treatments increased Cmic & Nmic, Cmic/Corg (organic C) ratios, Cmic/Nmic, urease activity, soil organic matter (SOM), soil total nitrogen (STN), and soil total phosphorus (STP). All these properties in treatment with fertilizers input NPKM+ were the highest. Meantime, long-term combined application of mineral fertilizers with organic manure or crop straw could significantly decrease the soil pH in Fluvo-aquic soil (the pH around 8.00 in this experimental soil). Some of soil microbial properties (Cmic/Nmic, urease activity) were positively correlated with soil nutrients. Cmic/Nmic was significantly correlated with SOM and STN contents. The correlation between catalase activity and soil nutrients was not significant. In addition, except of catalase activity, the soil pH in this experiment was negatively correlated with soil microbial properties. In conclusion, soil microbial properties reflect changes of soil quality and thus can be used as bio-indicators of soil health.
文摘The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2.
文摘We compared chemical and biological properties of soils in organically and conventionally fertilized apple orchards in Nagano Prefecture (one of the major apple producing regions in Japan). Five apple orchards with different fertilizer management systems were used for this study. The total carbon and total nitrogen contents were higher in the organically fertilized orchard, while the total phosphorus and total potassium were at similar levels in both organically and conventionally fertilized orchards. The bacterial biomass did not differ between the two orchards, but the N circulation activity was clearly higher in the organically fertilized orchard from April to December. Total carbon from 50,000 to 60,000 mg/kg, total nitrogen at about 3000 to 4000 mg/kg, and a C/N ratio of 15 - 20 were suggested to be suitable conditions for a high level of apple production under an organic fertilizer management system.
基金This work is supported by a grant of the National "Tenth Five Years" Key Technologies R&D Programme,China(No.2004BA720A33-01).
文摘Objective To explore the role of urokinase-type plasminogen activator(uPA) in precontact sperm-egg communication and fertility of mice in vitro. Methods Firstly, sperm chemotaxis (SC) induced by uPA was assayed by measuring the sperm densities in capillaries with a descending gradient or no gradient of uPA respectively. Secondly, the role of uPAR that exists in sperm plasma membrane in SC was studied by examining the change of sperm density in capillary after incubating spermatozoa with anti-uPAR antibody. Thirdly, SC induced by eggs, which had been treated with uPA, PAl-1 and anti-uPAR beforehand respectively, was assayed to study the role of uPA in PSEC. Lastly, the fertilization capability of spermatozoa treated with uPA was examined by counting the number of fertilized eggs. Results 1)The density of spermatozoa that migrated down the gradient of uPA into the capillary was significantly lower than that into the capillary containing no-gradient uPA. 2) When uPAR of spermatozoa was inhibited by anti-uPAR antibody, the density of spermatozoa that migrated into the capillary with ascending gradient of uPA decreased correspondingly. 3) The density of spermatozoa attracted by eggs, which were treated with uPA beforehand, increased significantly than that of attracted by non-treated eggs. On the contrary, the sperm density decreased correspondingly when the egg was treated with PAI-1. 4) The number of fertilized eggs increased significantly after the spermatozoa used here was treated with uPA beforehand. Conclusion uPA could induce SC of mice sperm in vitro through the uPAR on its membrane, enhance the capability of egg inducing SC, and promote spermatozoa to fertilize eggs. Thus, uPA may act as an attractant in PSEC, increase the chance encounter of spermatozoa and eggs, therefore, enhance the fertility success correspondingly. This study, in some degree, provides an evidence that uPA may be used as a new medicine and diagnostic reagent for male infertility.
基金Nanning Science and Technology Research and Technology Development Key R&D Program(20202087,20212020)Guangxi Science and Technology Major Project(GK AA17202026)+1 种基金Special Project of the Science and Technology Vanguard Special Action of Guangxi Academy of Agricultural Sciences(GNKM 202114)Guangxi Selenium-rich Featured Crops Experimental Station(G TS2016011).
文摘[Objectives]This study was conducted to explore the effects of using fermented organic fertilizers such as cow manure on the activity of selenium in the soil.[Methods]The project team applied the organic fertilizer prepared by fermenting cow manure and other raw materials to activate selenium in the soil at two dragon fruit orchard bases in Shilong Town,Guiping City and Dingdang Town,Long an County,and carried out many years of experiments.[Results]The contents of available selenium in the two experimental orchards in Shilong Town and Dingdang Town increased by 10%and 5%,respectively,and the selenium contents in dragon fruit increased by 228.6%and 200.0%,respectively.[Conclusions]The application of fermented organic fertilizers such as cow manure can increase available selenium content in the soil,thereby increasing the selenium content of dragon fruit.
文摘The gross alpha (α) and beta (β) activities and trace heavy elemental concentrations have been determined in Single Super Phosphate (SSP) and Nitrogen Phosphorous Potassium (NPK) fertilizers samples used for agricultural purposes in Nigeria. Cultivated farm soil samples from two regions (north and south) in the country and samples of phosphate rocks were also analyzed for gross α and β radioactivity and elemental concentrations. The beta activity concentration in the NPK (15-15-15) fertilizers was found to vary from 2410.0 ± 80.0 Bq·kg–1 to 4560 ± 140.0 Bq·kg–1, between 1340.0 ± 70.0 Bq·kg–1 and 1440.0 ± 70.0 Bq·kg–1 in the Single Super phosphate fertilizers while in the farm soil it ranged between 360.0 ± 40.0 Bq·kg–1 to 570.0 ± 50.0 for the north samples and 200.0 ± 50.0 to 230.0 ± 20 Bq·kg–1 for the south samples. The alpha activities in the NPK fertilizers was found to vary from 20.0 ± 10.0 to 90.0 ± 20.0 Bq·kg–1, in the SSP it varied from 60.0 ± 20.0 to 100.0 ± 20.0 Bq·kg–1 while in the soil samples it varied from 8.0 ± 6.0 to 40.0 ± 10.0
文摘In this study, the potential effects of palm kernel oil (PKO), pineapple peels derived-activated carbon (PPAC) and NPK fertilizer (20:10:10) as amendment agents on the natural bioattenuation of 2,6-dichlorophenol (2,6-DCP) in tropical agricultural soil were investigated. The effect of PPAC dosage on 2,6-DCP biodegradation was also studied. Column reactors containing soil were spiked with 2,6-dichlorophenol (2,6-DCP) wastewater (300 mg/l) and amended with PKO, NPK fertilizer and PPAC alone or in combinations. The rates of 2,6-DCP biodegradation were studied for a remediation period of 42 days under laboratory conditions. The results showed that there was a positive relationship between the rate of 2,6-DCP biodegradation, bacterial growth rate and presence of NPK fertilizer and PPAC (alone or in combination) in soil column microcosms contaminated with 2,6-DCP. The 2,6-DCP biodegradation data fitted well to the first-order kinetic model. The model revealed that 2,6-DCP contaminated-soil microcosms amended with NPK fertilizer and PPAC (alone or in combination) had higher biodegradation rate constants (k) as well as lower half-life times (t1/2) than soil column microcosms amended with PKO and unamended soil (natural attenuation) remediation system. Thus, the use of combined NPK fertilizer and activated carbon (NPK + PPAC) to enhance 2,6-DCP degradation in the soil could be one of the severally sought bioremediation strategies of remediating natural ecosystem (environment) contaminated with organic chemicals.
文摘The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent.
文摘Soybean (Glycine max: Fabaceae) is a mycotrophic (mycorrhizal) crop grown commercially for human consumption. Seven different fertilizer mixtures, namely cow dung, coir dust, mush room medium waste, saw dust, compost, decaying leaves and field soil with standard dose of NPK (control) were used for this experiment. The variety used was PM 25. Soil microbial activity was measured using CO2 evolution method. The experiment was carried out as a complete randomized block design with five replicates at the rate of eight plants per replicate. Average number of leaves on 25-day and 45-day old plants, shoot-length, root-length, number of pods per plant, wet weight of pod per plant, dry weight of pod per plant, plant wet weight, plant dry weight and seed dry weight per pod were measured. All management practices were conducted according to recommendations of the Department of Agriculture from seed germination to harvesting. Data were analyzed using SAS program (9.1.3). Highest number of pods/plant (100, 124, 102, 106) and dry-seed-weight in g/plant (12, 14.8, 12, 12) were recorded in those grown in cow dung, compost, decaying leaves and inorganic mixture (control) whereas the lowest pod production (8.7 pods/plant) and seed dry weight (1.0 g/plant) was recorded in saw dust. Instead of inorganic fertilizer there is possibility to use organic potting mixtures like compost and decaying leaves which gave a significant difference in crop productivity as compared to other treatments. Significantly highest mean microbial activity was observed in potting media filled with coir dust.