Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency...Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.展开更多
To evaluate the temporal patterns of N deficiencies in corn and assess the ability of remote sensing to diagnose N deficiencies during the vegetative growth of corn, three field-scale experiments were conducted with v...To evaluate the temporal patterns of N deficiencies in corn and assess the ability of remote sensing to diagnose N deficiencies during the vegetative growth of corn, three field-scale experiments were conducted with various rates (56, 112, and 168 kg N ha-1 ), timing (early and late applications) and placement (injected into soil and dribbled on soil surface) of N fertilization in a split-plot design. Relationships between canopy reflectance during the growing season and yield data at the end of growing season were studied for different treatments. Results showed significant variation in both grain yields and canopy reflectance among the three cornfields. The N fertilization made in early June resulted in low canopy reflectance in early July, but the differences disappeared as the season progressed. The effect of N rates on canopy reflectance was not significant in early July but it gradually became detectable in mid-July and thereafter. The fertilizer placement had a significant effect on grain yields only in one field but not on canopy reflectance in all three fields. These observations suggest that the deficiency of N developed under field conditions is a dynamic phenomenon, which adds complexity for accurately defining "N deficiency" and effectively developing management strategies for in-season correction. Remote sensing throughout the season helps collect information about important interactions that have not been given enough attention in the past.展开更多
基金funded by grants from the National Natural Science Foundation of China(32301947,32272220 and 32172120)the China Postdoctoral Science Foundation(2023M730909).
文摘Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice.
基金Project supported by the Iowa Soybean Association On-Farm Network R, USA
文摘To evaluate the temporal patterns of N deficiencies in corn and assess the ability of remote sensing to diagnose N deficiencies during the vegetative growth of corn, three field-scale experiments were conducted with various rates (56, 112, and 168 kg N ha-1 ), timing (early and late applications) and placement (injected into soil and dribbled on soil surface) of N fertilization in a split-plot design. Relationships between canopy reflectance during the growing season and yield data at the end of growing season were studied for different treatments. Results showed significant variation in both grain yields and canopy reflectance among the three cornfields. The N fertilization made in early June resulted in low canopy reflectance in early July, but the differences disappeared as the season progressed. The effect of N rates on canopy reflectance was not significant in early July but it gradually became detectable in mid-July and thereafter. The fertilizer placement had a significant effect on grain yields only in one field but not on canopy reflectance in all three fields. These observations suggest that the deficiency of N developed under field conditions is a dynamic phenomenon, which adds complexity for accurately defining "N deficiency" and effectively developing management strategies for in-season correction. Remote sensing throughout the season helps collect information about important interactions that have not been given enough attention in the past.