期刊文献+
共找到7,374篇文章
< 1 2 250 >
每页显示 20 50 100
Strigolactones modulate cotton fiber elongation and secondary cell wall thickening 被引量:2
1
作者 Yunze Wen Peng He +3 位作者 Xiaohan Bai Huizhi Zhang Yunfeng Zhang Jianing Yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1850-1863,共14页
Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes ... Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture. 展开更多
关键词 STRIGOLACTONES fiber elongation secondary cell wall thickening COTTON
下载PDF
Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis 被引量:55
2
作者 Jin-Ying Gou Ling-Jian Wang +2 位作者 Shuang-Ping Chen Wen-Li Hu Xiao-Ya Chen 《Cell Research》 SCIE CAS CSCD 2007年第5期422-434,共13页
Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell w... Cotton fibers elongate rapidly after initiation of elongation, eventually leading to the deposit of a large amount of cellulose. To reveal features of cotton fiber cells at the fast elongation and the secondary cell wall synthesis stages, we compared the respective transcriptomes and metabolite profiles. Comparative analysis of transcriptomes by cDNA array identified 633 genes that were differentially regulated during fiber development. Principal component analysis (PCA) using expressed genes as variables divided fiber samples into four groups, which are diagnostic of developmental stages. Similar grouping results are also found if we use non-polar or polar metabolites as variables for PCA of developing fibers. Auxin signaling, wall-loosening and lipid metabolism are highly active during fiber elongation, whereas cellulose biosynthesis is predominant and many other metabolic pathways are downregulated at the secondary cell wall synthesis stage. Transcript and metabolite profiles and enzyme activities are consistent in demonstrating a specialization process of cotton fiber development toward cellulose synthesis. These data demonstrate that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript and metabolite profiles. During the secondary cell wall synthesis stage, metabolic pathways are streamed into cellulose synthesis. 展开更多
关键词 cotton fiber TRANSCRIPTOME metabolite profile AUXIN cell elongation cellulose synthesis
下载PDF
Microstructural evolution and strengthening mechanism of aligned steel fiber cement-based tail backfills exposed to electromagnetic induction
3
作者 Xihao Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2390-2403,共14页
Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative... Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations. 展开更多
关键词 electromagnetic induction steel fiber cemented tailings backfill strength microstructure
下载PDF
EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND PROPERTIES OF HIGH STRENGTH AND HIGH ELONGATION STEELS 被引量:1
4
作者 Y.Chen X.Chen +6 位作者 P.H.Li S.K.Pu Z.X.Yuan B.F.Xu D.X.Lou A.M.Guo S.B.Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第1期65-71,共7页
The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The resear... The micro structure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the influence of different carbon content. The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elongation. Besides, new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper. 展开更多
关键词 carbon content high strength high elongation steel retained austenite
下载PDF
GhAlaRP, a cotton alanine rich protein gene, involves in fiber elongation process 被引量:1
5
作者 Shouhong Zhu Yanjun Li +6 位作者 Xinyu Zhang Feng Liu Fei Xue Yongshan Zhang Zhaosheng Kong Qian-Hao Zhu Jie Sun 《The Crop Journal》 SCIE CSCD 2021年第2期313-324,共12页
Fiber length is one of the most important quality parameters of cotton fibers.Transcriptomic analyses of developing cotton fibers have identified genes preferentially expressing in fiber elongation stage,but few have ... Fiber length is one of the most important quality parameters of cotton fibers.Transcriptomic analyses of developing cotton fibers have identified genes preferentially expressing in fiber elongation stage,but few have been functionally characterized.Here,on the basis of confirmation of the preferential expression profile of GhAlaRP(Gh_A09G1166 and Gh_D09G1172),an alanine rich protein gene,in the rapid elongating fibers,we investigated the role of GhAlaRP in fiber development by generating transgenic cottons with an increased or decreased expression level of GhAlaRP.Our results showed that the fiber length was consistently significantly shorter in both the GhAlaRP-RNAi lines and the alarp mutant generated by genome editing than in the control YZ-1.GhAlaRP was localized on plasma membrane,nucleus and endoplasmic reticulum.The yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that GhAlaRP co-expresses and interacts with GhAnnexin(Gh_D11G2184)and GhEXPA(Gh_A10G2323)that are involved in fiber elongation.Down-regulation of GhAlaRP co-suppressed the expression levels of GhAnnexin and GhEXPA.These results suggest a role of GhAlaRP in regulation of cotton fiber elongation,which could be achieved by regulating the functions of GhAnnexin and GhEXPA. 展开更多
关键词 AlaRP fiber elongation G.hirsutum Genome editing
下载PDF
GhIQD10 interacts with GhCaM7 to control cotton fiber elongation via calcium signaling 被引量:1
6
作者 Fan Xu Li Wang +5 位作者 Jun Xu Qian Chen Caixia Ma Li Huang Guiming Li Ming Luo 《The Crop Journal》 SCIE CSCD 2023年第2期447-456,共10页
IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transiti... IQ67-domain(IQD)proteins function in plant defense and in organ development.The mechanisms by which they influence cotton fiber development are unknown.In the present study,GhIQD10 was expressed mainly in the transition period of cotton fiber development,and GhIQD10-overexpression lines showed shorter fibers.GhIQD10 interacted with GhCaM7 and the interaction was inhibited by Ca^(2+).In in vitro ovule culture,Ca^(2+)rescued the shorter-fiber phenotype of GhIQD10-overexpression lines,which were insensitive to the Ca^(2+)channel inhibitor verapamil and the Ca^(2+)pool release channel blocker 2-aminoethoxydiphenyl borate.We conclude that GhIQD10 affects cotton fiber elongation via Ca^(2+)signaling by interacting with GhCaM7.Brassinosteroid(BR)biosynthesis and signaling genes were up-regulated in GhIQD10-overexpression lines.Fiber development in these lines was not affected by epibrassinolide or the BR biosynthesis inhibitor brassinozole,indicating that the influence of GhIQD10 on fiber elongation was not associated with BR. 展开更多
关键词 Cotton fiber elongation IQ67-domian protein CA^(2+) BRASSINOSTEROID
下载PDF
GhDET2,a Steroid 5alpha-reductase,Plays an Important Role in Cotton Fiber Cell Initiation and Elongation 被引量:1
7
作者 LUO Ming,XIAO Yue-hua,LI Xian-bi,LI De-mou,HOU Lei,HU Ming-yu,PEI Yan(Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture,Biotechnology Research Center,Southwest University,Chongqing 400716,China) 《棉花学报》 CSCD 北大核心 2008年第S1期130-,共1页
Cotton(Gossypium hirsutum L.) fibers,one of the most important natural raw materials for the textile industry,are highly elongated trichomes from epidermal cells of cotton ovules.Among the longest plant cells ever cha... Cotton(Gossypium hirsutum L.) fibers,one of the most important natural raw materials for the textile industry,are highly elongated trichomes from epidermal cells of cotton ovules.Among the longest plant cells ever characterized,cotton fiber is an ideal system for studying plant cell elongation. 展开更多
关键词 BRs GhDET2 a Steroid 5alpha-reductase Plays an Important Role in Cotton fiber Cell Initiation and elongation Cell
下载PDF
Strength and elongation of spray formed Al–Si–Pb alloys
8
作者 Aruna Tomar Rashmi Mittal Devendra Singh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第12期1222-1227,共6页
The strength and elongation to fracture of spray deposited Al-Si-Pb alloys were studied as a function of lead content, silicon content, and distance from the centre to periphery of the deposit. It is found that the ul... The strength and elongation to fracture of spray deposited Al-Si-Pb alloys were studied as a function of lead content, silicon content, and distance from the centre to periphery of the deposit. It is found that the ultimate tensile strength, proof stress and elongation to fracture decrease, linearly and exponentially, with the increase in lead content and porosity of the deposit, respectively. Both the strengths and elongation to fracture linearly increase with increasing distance from the centre to periphery of the deposit. The ultimate tensile strength and proof stress are higher at a higher silicon content and they have a linear relationship with the hardness of the deposit. 展开更多
关键词 aluminum silicon alloys spray forming tensile strength proof stress elongation
下载PDF
Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis
9
作者 Jianyan Zeng Dan Yao +17 位作者 Ming Luo Lingli Ding Yi Wang Xingying Yan Shu’e Ye Chuannan Wang Yiping Wu Jingyi Zhang Yaohua Li Lingfang Ran Yonglu Dai Yang Chen Fanlong Wang Hanyan Lai Nian Liu Nianjuan Fang Yan Pei Yuehua Xiao 《The Crop Journal》 SCIE CSCD 2023年第3期774-784,共11页
Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate lig... Cotton fiber is a raw material for the global textile industry and fiber quality is essential to its industrial application.Carotenoids are plant secondary metabolites that may serve as dietary components,regulate light harvesting,and scavenge reactive oxygen species.Although carotenoids accumulate predominantly in rapidly elongating cotton fibers,their roles in cotton fiber development remain poorly understood.In this study,a fiber-specific promoter proSCFP was applied to drive the expression of GhOR1Del,a positive regulator of carotenoid accumulation,to upregulate the carotenoid level in cotton fiber in planta.Fiber length,strength,and fineness were increased in proSCFP:GhOR1Del transgenic cotton and abscisic acid(ABA)and ethylene contents were increased in elongating fibers.The ABA downstream regulator GhbZIP27a stimulated the expression of the ethylene synthase gene GhACO3 by binding to its promoter,suggesting that ABA promoted fiber elongation by increasing ethylene production.These findings suggest the involvement of carotenoids and ABA signaling in promoting cotton fiber elongation and provide a strategy for improving cotton fiber quality. 展开更多
关键词 Abscisic acid CAROTENOID Cotton fiber elongation ETHYLENE ORANGE gene
下载PDF
Gossypium herbaceum Negative Mutant for Fiber Elongation a Useful Isoline for Identification of Genes for Fiber Elongation
10
作者 KATAGERI I S KHADI B M ANANDKUMA P REDDY V S VAMADEVAAH H M 《棉花学报》 CSCD 北大核心 2008年第S1期83-,共1页
Actin cytoskeleton plays an important role in cell morphogenesis in plants as demonstrated by pharmacological,biochemical,and genetic studies.The actin cytoskeleton may be involved in
关键词 Gossypium herbaceum Negative Mutant for fiber elongation a Useful Isoline for Identification of Genes for fiber elongation GENE
下载PDF
Biochemical Pathways That Are Important for Cotton Fiber Cell Elongation
11
作者 ZHU Yu-xian(The National Laboratory of Protein Engineering and Plant Genetic Engineering,Peking University,Beijing 100871,China) 《棉花学报》 CSCD 北大核心 2008年第S1期10-,共1页
The regulatory mechanism that controls the sustained cotton fiber cell elongation is gradually being elucidated by coupling genome-wide transcriptome profiling with systematic biochemical and physiological studies.Ver... The regulatory mechanism that controls the sustained cotton fiber cell elongation is gradually being elucidated by coupling genome-wide transcriptome profiling with systematic biochemical and physiological studies.Very long chain fatty acids(VLCFA),H2O2,and several types of plant 展开更多
关键词 Biochemical Pathways That Are Important for Cotton fiber Cell elongation CELL
下载PDF
Transcriptome Profiling and Biochemical Studies Reveal New Mechanisms for Cotton Fiber Cell Elongation
12
作者 Y.H. Shi Y.M. Qin C.Y. Hu Y. Pang Y.X. Zhu 《分子植物育种》 CAS CSCD 2007年第2期159-160,共2页
Cotton is the world's most important natural textile fi ber, and is practiced on about 2.5% of arable land that supported the life of about 100 million family units. Each cotton fi ber, about 25 000 per seed, is a... Cotton is the world's most important natural textile fi ber, and is practiced on about 2.5% of arable land that supported the life of about 100 million family units. Each cotton fi ber, about 25 000 per seed, is a single, phe- 展开更多
关键词 生物化学 棉花 纤维 伸长率
下载PDF
Study on High Strength Concrete Confined by Continuous Carbon Fiber Sheet 被引量:2
13
作者 赵彤 谢剑 +1 位作者 刘明国 河村博之 《Transactions of Tianjin University》 EI CAS 2002年第1期12-15,共4页
Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined ... Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree. 展开更多
关键词 high strength concrete carbon fiber sheet strength DEFORMATION
下载PDF
TENSILE STRENGTH OF RANDOM ORIENTED SHORT FIBER COMPOSITE
14
作者 唐德敏 许晓秋 +1 位作者 冯建新 方洞浦 《Transactions of Tianjin University》 EI CAS 1998年第2期59-62,共4页
This paper shows a calculation model and a method for predicting the tensile strength of the random distributed short fiber composite.On the basis of Renjie Mao's model,the longitudinal tensile strength of the ali... This paper shows a calculation model and a method for predicting the tensile strength of the random distributed short fiber composite.On the basis of Renjie Mao's model,the longitudinal tensile strength of the aligned short fiber composite is formulated.Considering the transverse tensile strength and in plane shear strength of the unidirectional fiber composite,and the stress transformation relations of two couples of axes,the stress of the unidirectional fiber composite when it is loaded at an arbitrary angle is obtained.With the aid of an equivalence relation,the calculation formulation of the tensile strength of the random short fiber reinforced composite is deduced. 展开更多
关键词 random short fiber composite tensile strength calculation model
下载PDF
Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites 被引量:4
15
作者 曹勇 吴义强 《Journal of Central South University》 SCIE EI CAS 2008年第S1期564-567,共4页
Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of ba... Green composites made from bamboo fibers and biodegradable resins were fabricated with press molding.On the basis of the Weibull distribution and the weakest-link theory,the statistical strength and distribution of bamboo fiber were analyzed,and the tensile strength of green composites was also investigated.The result confirms that the tensile statistical strength of fiber fits well with two-parameter Weibull distribution.In addition,the tensile strength of bamboo fiber reinforced composites is about 330 MPa with the fiber volume fraction of 70%.This value is close to or higher than that of other natural fiber reinforced green composites. 展开更多
关键词 BAMBOO fiber Weibull distribution TENSILE strength green composite
下载PDF
Effect of Polypropylene Fibers on the Long-term Tensile Strength of Concrete 被引量:4
16
作者 姚武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第1期52-55,共4页
The influence of low volume fraction of polypropylene(PP) fibers on the tensile properties of normal and high strength concretes was studied. The experimental results indicate that the addition of PP fibers in concr... The influence of low volume fraction of polypropylene(PP) fibers on the tensile properties of normal and high strength concretes was studied. The experimental results indicate that the addition of PP fibers in concrete leads to a reduction in tensile strength during the age of 28 d. Whereas, after 28 days, there is a notable effect in tensile strength due to PP fibers restraining the formation and growth of microcracks in concrete, which improves the continuity and integrality of concrete structure, Thus, a low volume fraction of PP fibers is beneficial to enhancing the long-term tensile strength of concrete materials and improving the durability of concrete structures. 展开更多
关键词 polypropylene fiber CONCRETE tensile strength MICROCRACK
下载PDF
Compressive and tensile strength of polymer-based fiber composite sand 被引量:7
17
作者 MA Ke LIU Jin +4 位作者 JIANG Can-hui MA Xiao-fan HUANG Lan-hua HE Cheng-zong QI Chang-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期528-545,共18页
Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polyme... Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized. 展开更多
关键词 SAND soil reinforcement sisal fiber polyurethane organic polymer compressive strength tensile strength
下载PDF
Experimental investigation of axially loaded steel fiber reinforced high strength concrete-filled steel tube columns 被引量:9
18
作者 卢亦焱 李娜 +1 位作者 李杉 梁鸿骏 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2287-2296,共10页
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ... An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures. 展开更多
关键词 concrete-filled steel tube (CFST) zolumns steel fiber high strength concrete axial load DUCTILITY load capacity
下载PDF
Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy 被引量:13
19
作者 Han Yongquan Han Jiao +2 位作者 Chen Yan Yao Qinghu Wang peng 《China Welding》 CAS 2021年第3期7-11,共5页
The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-M... The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable. 展开更多
关键词 High strength aluminum alloy fiber laser-MIG hybrid welding arc behavior electrical signal
下载PDF
Charactersitics of Stress-strain Curve of High Strength Steel Fiber Reinforced Concrete under Uniaxial Tension 被引量:2
20
作者 杨萌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期132-137,共6页
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo... A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction. 展开更多
关键词 steel fiber reinforced concrete high strength uniaxial tension soften characteristics stress-strain curve
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部