By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D ma...Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.展开更多
We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable ...We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.展开更多
Wavelength-tunable ultrashort pulse source with high energy is highly desired for a lot of applications. The wavelength-tunable all-normal-dispersion (ANDi) mode-locked fiber laser, which can be compressed easily an...Wavelength-tunable ultrashort pulse source with high energy is highly desired for a lot of applications. The wavelength-tunable all-normal-dispersion (ANDi) mode-locked fiber laser, which can be compressed easily and amplified by an all-fiber structure, is a promising seed of such a source with compact structures. The pulse compression and amplification at different center wavelengths (from 1026 to 1058nm) of the tunable ANDi Yb- doped mode-locked fiber lasers that we previously proposed are experimentally investigated in this work. It is found that, for different wavelengths, the duration and chirp of the direct output pulse from the oscillator vary considerably, however, the duration of compressed pulse fluctuates less. For the amplification process, due to the unf/at gain spectrum of Yb-doped fiber, the gain at a short wavelength is larger than that at a long wavelength. Consequently, the trends of spectrum distortions induced by the amplification process are different for different wavelengths. These results and analyses will be helpful for the design of a high-energy and wavelength-tunable ultrashort pulse source based on an ANDi seed.展开更多
The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrtidinger equation and a saturable absorpt...The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrtidinger equation and a saturable absorption equation using realistic parameters. Stable self-starting mode-locking pulses are achieved under net normal, net zero, and net anomalous cavity group velocity dispersion (GVD) respectively. A spectrum with a flat top is obtained from the net normal cavity GVD laser while a spectrum with Kelly side-bands is obtained from the net anomalous cavity GVD laser. The characteristics of the pulse duration changing with cavity GVD and modulation depth of the single-walled carbon nanotubes are discussed. The characteristics of the mode-locking pulses from net normal, net zero, and net anomalous cavity GVD mode-locked fiber lasers are compared. These systematical results are useful for designing mode-locked fiber lasers with saturable absorbers made by different kinds of carbon nano-materials.展开更多
After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, wi...After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.展开更多
We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dis...We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.展开更多
We present the recent research progress of our group on mid-infrared pulsed fiber lasers at 3μm by passive switching. Three different kinds of saturable absorbers including semiconductor saturable absorber (SESAM),...We present the recent research progress of our group on mid-infrared pulsed fiber lasers at 3μm by passive switching. Three different kinds of saturable absorbers including semiconductor saturable absorber (SESAM), Fe2+:ZnSe crystal, topological insulator (TI) were used to perform the pulse generation, respectively. The temporal regimes of mode locking, Q-switching and Q-switching induced gain switching were gained. Some relative discussions and prospective efforts are proposed at the end of this paper.展开更多
As mid-infrared (MIR) lasers show numerous applications in the field of defense, medical, materials processing, and optical communications. Investigation on MIR Raman fiber lasers (RFL) increasingly becomes a hot ...As mid-infrared (MIR) lasers show numerous applications in the field of defense, medical, materials processing, and optical communications. Investigation on MIR Raman fiber lasers (RFL) increasingly becomes a hot topic. Compared with traditional silica fiber, fluoride and chalcogenide glass fibers possess higher nonlinear coefficients and excellent MIR transmittances. In this article, the latest development of the MIR RFL using fluoride and chalcogenide glass fibers as gain media are introduced, respectively. This review article mainly focuses on the development of MIR RFLs in aspects of output wavelength, output power and optical efficiency. The prospect of MIR RFLs is also discussed.展开更多
We numerically study the artificial spectral-filtering effect in dissipative soliton fiber lasers without intracavity spectral filters. It is found that in dissipative soliton lasers with real saturable absorbers (SA...We numerically study the artificial spectral-filtering effect in dissipative soliton fiber lasers without intracavity spectral filters. It is found that in dissipative soliton lasers with real saturable absorbers (SAs), the dynamic spectral filtering of the real SAs serves as an artificial spectral filter and contributes to the pulse shaping. While in the dissi- pative soliton lasers with artificiM SAs, such as nonlinear polarization rotation, the spectrM filtering introduced by the intracavity polarization-dependent components acts as an artificial spectral filter and shapes the pulses to obtain mode- locking. An investigation of the artificial spectral-filtering effect reveals the operating mechanisms of the dissipative soliton fiber lasers without visible bandpass filters.展开更多
Different material-doped Raman fiber lasers with very high efficiency operating in continuous-wave are presented.With 1 W Nd∶YVO 4 laser pumping at wavelength of 1 342 nm, single mode output power of above 500 mW (op...Different material-doped Raman fiber lasers with very high efficiency operating in continuous-wave are presented.With 1 W Nd∶YVO 4 laser pumping at wavelength of 1 342 nm, single mode output power of above 500 mW (optical-to-optical conversion efficiency of 50%) is simulated in the range of 1 400-1 500 nm.Using high-germanium,high-phosphate and high-borate silicate fibers as the gain medium,laser output at wavelengths of 1 420,1 450,1 480 and 1 495 nm can be achieved with different geometries,which are just as pumping C-band and L-band distributed Raman fiber amplifiers.展开更多
Two types of the dual mode-locked fiber lasers for asynchronous absolute distance measurement are investigated, The lasers are linear and ring cavity with repetition rate of 70 MHz and 100 MHz, respectively. The group...Two types of the dual mode-locked fiber lasers for asynchronous absolute distance measurement are investigated, The lasers are linear and ring cavity with repetition rate of 70 MHz and 100 MHz, respectively. The group velocity dispersion is not compensated in the first type of the lasers, while the others are fully done. The timing jitter with the Allan deviation below averaging time of 0.2 s during the distance measurement for around 1 m of both types of lasers were 2.5 ps with 600 nm and 1.6 ps with 200 nm. We concluded that the phase noise resulted from the intra-cavity dispersion is the main contribution for the uncertainty of the ranging in these two types of the lasers.展开更多
Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of...Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of the multi-wavelength soliton state in a negative dispersion passively mode-locked fiber laser are realized.The generation of the multi-wavelength soliton state undergoes the process of noise,oscillation,and stable mode-locking,and the splitting and annihilation of solitons with different group velocities directly impact the generation and disappearance of three wavelengths.Positive and negative dispersion lead to different group velocities of solitons.The presence and displacement of solitons with different group velocities cause soliton collisions,which lead to soliton explosions.A soliton experiences relative phase oscillation,chaos,and oscillation,as well as convergence and separation before and after an explosion.With an increase in parameters related to pump power,single-soliton oscillation,multi-wavelength solitons,and chaos are found in experiments and simulations,proving the relevance and reliability between simulation and experimental results.This work promotes the dynamical study of multi-soliton collisions in nonlinear science and the development of chaos theory in multi-comb lasers.展开更多
Niobium telluride(NbTe_(2)),a kind of few-layer two-dimensional(2D)transition metal dichalcogenides(TMDs)material,has been theoretically predicted with nonlinear absorption properties and excellent optical response.He...Niobium telluride(NbTe_(2)),a kind of few-layer two-dimensional(2D)transition metal dichalcogenides(TMDs)material,has been theoretically predicted with nonlinear absorption properties and excellent optical response.Herein,we experimentally demonstrated an Er-doped fiber(EDF)laser based NbTe_(2)as saturable absorber(SA).Few-layer NbTe_(2)nanosheets were successfully prepared by adopting the commonly used liquid-phase exfoliation(LPE)method.The nonlinear optical response of highly stable few-layer NbTe_(2)was investigated through an open-aperture Z-scan laser measurement,the nonlinear absorption coefficient was 2.45×10^(-11)m/W.Both Q-switched and mode-locked operation centered at 1559 nm were recorded based on NbTe_(2)SA.The pulse duration was varied from 4.88 ms to 1.75 ms,and the adjustable range of repetition frequency is changed from 44.01 kHz to 64.12 kHz in passively Q-switched operation.Furthermore,a constant repetition rate of 5.33 MHz and pulse width of 2.67 ps were observed in mode-locked operation.Our experimental results fully reveal the nonlinear optical prop-erties of NbTe_(2)used in pulsed fiber lasers and broaden its ultrafast applications in the optics field.展开更多
The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers.However,there is still a dearth of deep understandin...The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers.However,there is still a dearth of deep understanding regarding the extinction process of dissipative solitons.In this study,we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser.The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons.The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power.Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser.These results corroborate the role of Q-switching instability in the onset of breathing oscillations.Furthermore,these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.展开更多
The power scaling on short wavelength(SW)fiber lasers operating around 1μm are in significant demand for applications in energy,environment and industry.The challenge for performance scalability of high-power SW lase...The power scaling on short wavelength(SW)fiber lasers operating around 1μm are in significant demand for applications in energy,environment and industry.The challenge for performance scalability of high-power SW lasers based on rare-earth-doped fiber primarily lies in the physical limitations,including reabsorption,amplified spontaneous emission and parasitic laser oscillation.Here,we demonstrate an all-fiberized,purely passive SW(1018 nm)randomdistributed-feedback Raman fiber laser(RRFL)to validate the capability of achieving high-power output at SWs based on multimode laser diodes(LDs)direct pumping.Directly pumped by multimode LDs,the high-brightness RRFL delivers over 656 W,with an electro-optical efficiency of 20%relative to the power.The slope efficiency is 94%.The beam quality M2factor is 2.9(which is~20 times that of the pump)at the maximum output signal power,achieving the highest brightness enhancement of 14.9 in RRFLs.To the best of our knowledge,this achievement also represents the highest power record of RRFLs utilizing multimode diodes for direct pumping.This work may not only provide a new insight into the realization of high-power,high-brightness RRFLs but also is a promising contender in the power scaling of SWs below 1μm.展开更多
Stimulated Brillouin scattering (SBS) is a key problem with the increasing power of fiber transmission systems. In this letter, a frequency-modulated fiber laser with an ultra-narrow linewidth is chosen as a light s...Stimulated Brillouin scattering (SBS) is a key problem with the increasing power of fiber transmission systems. In this letter, a frequency-modulated fiber laser with an ultra-narrow linewidth is chosen as a light source. The SBS threshold is increased from 4.1 to 6.2 mW at 13-MHz frequency modulation amplitude for a 50-km G652 fiber. We also show that the SBS threshold increases with not only the frequency modulation amplitude, but also the modulation frequency. The modulation frequency should be high enough for effective modulation.展开更多
The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition me...The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition metal sulfide semiconductors, like molybdenum disulfide(MoS2). The most important experimental achievements are described and compared. Additionally, new original results on ultrashort pulse generation at 1.94 μm wavelength using graphene are presented. The designed Tm-doped fiber laser utilizes multilayer graphene as a saturable absorber and generates 654 fs pulses at 1940 nm wavelength, which are currently the shortest pulses generated from a Tm-doped fiber laser with a graphene-based saturable absorber.展开更多
In this work pulse generation in both the 1.5 and 2 μm spectral ranges using a graphene oxide(GO)-paper-based saturable absorber in Er-and Tm-doped fiber lasers is presented. The article describes the fabrication met...In this work pulse generation in both the 1.5 and 2 μm spectral ranges using a graphene oxide(GO)-paper-based saturable absorber in Er-and Tm-doped fiber lasers is presented. The article describes the fabrication method of GO paper and its characterization. The performance of both lasers is discussed in detail. Stable, mode-locked operation provides 613 fs and 1.36 ps soliton pulses centered at 1565.9 and 1961.6 nm in Er-and Tm-doped fiber lasers, respectively. Furthermore, scaling of spectral width, and hence the pulse duration, by increasing the number of GO paper layers in the Er-doped laser is described. The versatility and simplicity of GO paper fabrication combined with the possibility of scaling the optical spectrum full width at half-maximum are essential features that make it a good candidate for ultrafast low-power mode-locked lasers operating in different spectral regions.展开更多
Tungsten disulfide(WS_2) is a type of anisotropic-layered compound and has broadband saturable absorption features as saturable absorbers(SAs). With WS_2-based SAs, dark solitons in erbium-doped fiber(EDF) lasers are ...Tungsten disulfide(WS_2) is a type of anisotropic-layered compound and has broadband saturable absorption features as saturable absorbers(SAs). With WS_2-based SAs, dark solitons in erbium-doped fiber(EDF) lasers are first obtained. For the generated dark solitons, the center wavelength is measured to be 1530 nm, and the repetition rate is about 116.5 MHz. A series of optical spectra is exhibited. The electrical signal-to-noise ratio is better than 94 d B.Results in this paper demonstrate that WS_2-based SAs are the promising SAs for generating dark solitons in EDF lasers.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61307058,61378036,11304101,and 11474108)Guangdong Natural Science Funds for Distinguished Young Scholar,China(Grant No.2014A030306019)+6 种基金Pearl River S&T Nova Program of Guangzhou,China(Grant No.2014J2200008)Program for Outstanding Innovative Young Talents of Guangdong Province,China(Grant No.2014TQ01X220)Program for Outstanding Young Teachers in Guangdong Higher Education Institutes,China(Grant No.YQ2015051)Science and Technology Project of Guangdong,China(Grant No.2016B090925004)Foundation for Young Talents in Higher Education of Guangdong,China(Grant No.2017KQNCX051)Science and Technology Program of Guangzhou,China(Grant No.201607010245)Scientific Research Foundation of Young Teacher of South China Normal University,China(Grant No.17KJ09)
文摘Two-dimensional(2D) materials have been regarded as a promising nonlinear optical medium for fabricating versatile optical and optoelectronic devices. Among the various photonic applications, the employment of 2D materials as nonlinear optical devices such as saturable absorbers for ultrashort pulse generation and shaping in ultrafast lasers is one of the most striking aspects in recent years. In this paper, we review the recent progress of 2D materials based pulse generation and soliton shaping in ultrafast fiber lasers, and particularly in the context of 2D materials-decorated microfiber photonic devices. The fabrication of 2D materials-decorated microfiber photonic devices, high performance mode-locked pulse generation, and the nonlinear soliton dynamics based on pulse shaping method are discussed. Finally, the challenges and the perspective of the 2D materials-based photonic devices as well as their applications are also discussed.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.
基金Supported by the Initiative Scientific Research Program of Tsinghua University
文摘Wavelength-tunable ultrashort pulse source with high energy is highly desired for a lot of applications. The wavelength-tunable all-normal-dispersion (ANDi) mode-locked fiber laser, which can be compressed easily and amplified by an all-fiber structure, is a promising seed of such a source with compact structures. The pulse compression and amplification at different center wavelengths (from 1026 to 1058nm) of the tunable ANDi Yb- doped mode-locked fiber lasers that we previously proposed are experimentally investigated in this work. It is found that, for different wavelengths, the duration and chirp of the direct output pulse from the oscillator vary considerably, however, the duration of compressed pulse fluctuates less. For the amplification process, due to the unf/at gain spectrum of Yb-doped fiber, the gain at a short wavelength is larger than that at a long wavelength. Consequently, the trends of spectrum distortions induced by the amplification process are different for different wavelengths. These results and analyses will be helpful for the design of a high-energy and wavelength-tunable ultrashort pulse source based on an ANDi seed.
基金supported by the National Key Basic Research Progrm of China(Grant No.2013CB922404)the National Natural Science Foundation of China(Grant No.61177047)the Key Project of the National Natural Science Foundation of China(Grant No.61235010)
文摘The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrtidinger equation and a saturable absorption equation using realistic parameters. Stable self-starting mode-locking pulses are achieved under net normal, net zero, and net anomalous cavity group velocity dispersion (GVD) respectively. A spectrum with a flat top is obtained from the net normal cavity GVD laser while a spectrum with Kelly side-bands is obtained from the net anomalous cavity GVD laser. The characteristics of the pulse duration changing with cavity GVD and modulation depth of the single-walled carbon nanotubes are discussed. The characteristics of the mode-locking pulses from net normal, net zero, and net anomalous cavity GVD mode-locked fiber lasers are compared. These systematical results are useful for designing mode-locked fiber lasers with saturable absorbers made by different kinds of carbon nano-materials.
文摘After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.
文摘We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.
基金supported by the National Natural Science Foundation of China under Grant No.61377042the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2013J058the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-13-0094
文摘We present the recent research progress of our group on mid-infrared pulsed fiber lasers at 3μm by passive switching. Three different kinds of saturable absorbers including semiconductor saturable absorber (SESAM), Fe2+:ZnSe crystal, topological insulator (TI) were used to perform the pulse generation, respectively. The temporal regimes of mode locking, Q-switching and Q-switching induced gain switching were gained. Some relative discussions and prospective efforts are proposed at the end of this paper.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2015KYQD015
文摘As mid-infrared (MIR) lasers show numerous applications in the field of defense, medical, materials processing, and optical communications. Investigation on MIR Raman fiber lasers (RFL) increasingly becomes a hot topic. Compared with traditional silica fiber, fluoride and chalcogenide glass fibers possess higher nonlinear coefficients and excellent MIR transmittances. In this article, the latest development of the MIR RFL using fluoride and chalcogenide glass fibers as gain media are introduced, respectively. This review article mainly focuses on the development of MIR RFLs in aspects of output wavelength, output power and optical efficiency. The prospect of MIR RFLs is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61077032)
文摘We numerically study the artificial spectral-filtering effect in dissipative soliton fiber lasers without intracavity spectral filters. It is found that in dissipative soliton lasers with real saturable absorbers (SAs), the dynamic spectral filtering of the real SAs serves as an artificial spectral filter and contributes to the pulse shaping. While in the dissi- pative soliton lasers with artificiM SAs, such as nonlinear polarization rotation, the spectrM filtering introduced by the intracavity polarization-dependent components acts as an artificial spectral filter and shapes the pulses to obtain mode- locking. An investigation of the artificial spectral-filtering effect reveals the operating mechanisms of the dissipative soliton fiber lasers without visible bandpass filters.
文摘Different material-doped Raman fiber lasers with very high efficiency operating in continuous-wave are presented.With 1 W Nd∶YVO 4 laser pumping at wavelength of 1 342 nm, single mode output power of above 500 mW (optical-to-optical conversion efficiency of 50%) is simulated in the range of 1 400-1 500 nm.Using high-germanium,high-phosphate and high-borate silicate fibers as the gain medium,laser output at wavelengths of 1 420,1 450,1 480 and 1 495 nm can be achieved with different geometries,which are just as pumping C-band and L-band distributed Raman fiber amplifiers.
文摘Two types of the dual mode-locked fiber lasers for asynchronous absolute distance measurement are investigated, The lasers are linear and ring cavity with repetition rate of 70 MHz and 100 MHz, respectively. The group velocity dispersion is not compensated in the first type of the lasers, while the others are fully done. The timing jitter with the Allan deviation below averaging time of 0.2 s during the distance measurement for around 1 m of both types of lasers were 2.5 ps with 600 nm and 1.6 ps with 200 nm. We concluded that the phase noise resulted from the intra-cavity dispersion is the main contribution for the uncertainty of the ranging in these two types of the lasers.
基金supported by the National Natural Science Foundation of China(Grant Nos.12261131495,12075210,and 12275240)the Scientific Research and Development Fund of Zhejiang A&F University(Grant No.2021FR0009)。
文摘Because of the complexity and difficulty of realizing a multi-wavelength soliton state,reports on its internal dynamic characteristics are scarce.In this study,the switching and periodic soliton explosion processes of the multi-wavelength soliton state in a negative dispersion passively mode-locked fiber laser are realized.The generation of the multi-wavelength soliton state undergoes the process of noise,oscillation,and stable mode-locking,and the splitting and annihilation of solitons with different group velocities directly impact the generation and disappearance of three wavelengths.Positive and negative dispersion lead to different group velocities of solitons.The presence and displacement of solitons with different group velocities cause soliton collisions,which lead to soliton explosions.A soliton experiences relative phase oscillation,chaos,and oscillation,as well as convergence and separation before and after an explosion.With an increase in parameters related to pump power,single-soliton oscillation,multi-wavelength solitons,and chaos are found in experiments and simulations,proving the relevance and reliability between simulation and experimental results.This work promotes the dynamical study of multi-soliton collisions in nonlinear science and the development of chaos theory in multi-comb lasers.
基金National Natural Science Foundation of China(Grant nos.61971271,11904213,62271294)the Jinan City-School Integration Development Strategy Project(JNSX2021023)+3 种基金the Major Program of Shandong Province Natural Science Foundation(ZR2022ZD16)the Shandong Province Major Technological Innovation Project(2022CXGC010502,2022CXGC020507,2022CXGC020505)the Key Project of Department of Education of Guangdong Province(Grant no.2018KCXTD026)the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah(Grant no:KEP-MSc-70-130-42),supported by“Opening Foundation of Shandong Provincial Key Laboratory of Laser Technology and Application”.
文摘Niobium telluride(NbTe_(2)),a kind of few-layer two-dimensional(2D)transition metal dichalcogenides(TMDs)material,has been theoretically predicted with nonlinear absorption properties and excellent optical response.Herein,we experimentally demonstrated an Er-doped fiber(EDF)laser based NbTe_(2)as saturable absorber(SA).Few-layer NbTe_(2)nanosheets were successfully prepared by adopting the commonly used liquid-phase exfoliation(LPE)method.The nonlinear optical response of highly stable few-layer NbTe_(2)was investigated through an open-aperture Z-scan laser measurement,the nonlinear absorption coefficient was 2.45×10^(-11)m/W.Both Q-switched and mode-locked operation centered at 1559 nm were recorded based on NbTe_(2)SA.The pulse duration was varied from 4.88 ms to 1.75 ms,and the adjustable range of repetition frequency is changed from 44.01 kHz to 64.12 kHz in passively Q-switched operation.Furthermore,a constant repetition rate of 5.33 MHz and pulse width of 2.67 ps were observed in mode-locked operation.Our experimental results fully reveal the nonlinear optical prop-erties of NbTe_(2)used in pulsed fiber lasers and broaden its ultrafast applications in the optics field.
基金supported by the National Natural Science Foundation of China(Grant Nos.62305299 and 62205296)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ22F050007 and LQ23F050004)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2020WNLOKF008)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C03084).
文摘The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers.However,there is still a dearth of deep understanding regarding the extinction process of dissipative solitons.In this study,we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser.The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons.The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power.Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser.These results corroborate the role of Q-switching instability in the onset of breathing oscillations.Furthermore,these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.
基金supported by the National Natural Science Foundation of China(Nos.62061136013 and 12174445)。
文摘The power scaling on short wavelength(SW)fiber lasers operating around 1μm are in significant demand for applications in energy,environment and industry.The challenge for performance scalability of high-power SW lasers based on rare-earth-doped fiber primarily lies in the physical limitations,including reabsorption,amplified spontaneous emission and parasitic laser oscillation.Here,we demonstrate an all-fiberized,purely passive SW(1018 nm)randomdistributed-feedback Raman fiber laser(RRFL)to validate the capability of achieving high-power output at SWs based on multimode laser diodes(LDs)direct pumping.Directly pumped by multimode LDs,the high-brightness RRFL delivers over 656 W,with an electro-optical efficiency of 20%relative to the power.The slope efficiency is 94%.The beam quality M2factor is 2.9(which is~20 times that of the pump)at the maximum output signal power,achieving the highest brightness enhancement of 14.9 in RRFLs.To the best of our knowledge,this achievement also represents the highest power record of RRFLs utilizing multimode diodes for direct pumping.This work may not only provide a new insight into the realization of high-power,high-brightness RRFLs but also is a promising contender in the power scaling of SWs below 1μm.
基金supported by the Program for New Century Excellent Talents in the University under Grant No. NCET-06-0925
文摘Stimulated Brillouin scattering (SBS) is a key problem with the increasing power of fiber transmission systems. In this letter, a frequency-modulated fiber laser with an ultra-narrow linewidth is chosen as a light source. The SBS threshold is increased from 4.1 to 6.2 mW at 13-MHz frequency modulation amplitude for a 50-km G652 fiber. We also show that the SBS threshold increases with not only the frequency modulation amplitude, but also the modulation frequency. The modulation frequency should be high enough for effective modulation.
基金supported by the National Science Centre (NCN, Poland) under the research project entitled “Passive mode-locking in dispersion-managed ultrafast thulium-doped fiber lasers” (decision no. DEC-2013/11/D/ST7/03138)
文摘The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators(Bi2Te3, Bi2Se3, Sb2Te3), and transition metal sulfide semiconductors, like molybdenum disulfide(MoS2). The most important experimental achievements are described and compared. Additionally, new original results on ultrashort pulse generation at 1.94 μm wavelength using graphene are presented. The designed Tm-doped fiber laser utilizes multilayer graphene as a saturable absorber and generates 654 fs pulses at 1940 nm wavelength, which are currently the shortest pulses generated from a Tm-doped fiber laser with a graphene-based saturable absorber.
基金supported by the Polish Ministry of Science and Higher Education under the project entitled “Investigation of saturable absorbers based on graphene oxide and reduced graphene oxide” (project no. IP2012 052072)supported by the National Science Centre (NCN, Poland) under the project “Passive mode synchronization in fiber lasers based on low-dimensional materials—simulations and experiments” (decision no. DEC2014/13/N/ST7/01968)
文摘In this work pulse generation in both the 1.5 and 2 μm spectral ranges using a graphene oxide(GO)-paper-based saturable absorber in Er-and Tm-doped fiber lasers is presented. The article describes the fabrication method of GO paper and its characterization. The performance of both lasers is discussed in detail. Stable, mode-locked operation provides 613 fs and 1.36 ps soliton pulses centered at 1565.9 and 1961.6 nm in Er-and Tm-doped fiber lasers, respectively. Furthermore, scaling of spectral width, and hence the pulse duration, by increasing the number of GO paper layers in the Er-doped laser is described. The versatility and simplicity of GO paper fabrication combined with the possibility of scaling the optical spectrum full width at half-maximum are essential features that make it a good candidate for ultrafast low-power mode-locked lasers operating in different spectral regions.
基金supported by the National Key Basic Research Program of China (grant nos.2012CB821304,2013CB922401,and 2013CB922402)by the National Natural Science Foundation of China (NSFC) (grant nos.61205064,61378040,and 11078022)+1 种基金by the National Key Technology R&D Program of the Ministry of Science and Technology under grant no.2012BAC23B03by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications,grant no.600100161)
文摘Tungsten disulfide(WS_2) is a type of anisotropic-layered compound and has broadband saturable absorption features as saturable absorbers(SAs). With WS_2-based SAs, dark solitons in erbium-doped fiber(EDF) lasers are first obtained. For the generated dark solitons, the center wavelength is measured to be 1530 nm, and the repetition rate is about 116.5 MHz. A series of optical spectra is exhibited. The electrical signal-to-noise ratio is better than 94 d B.Results in this paper demonstrate that WS_2-based SAs are the promising SAs for generating dark solitons in EDF lasers.