The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation ...The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation device coupling beam. The chip was placed in the darkroom to avoid the interference of the external light.The cost of the instrument was decreased with a high brightness blue LED as excitation source;the performance of the system was valuated by the determination of FITC fluorescein with a minimum detectable concentration of 2.2×10^(-8) mol/L,the Signal-to-Noise Ratio (SNR) S/N=5.The correlation coefficient of the detection system within the range of 1.8×10^(-7) mol/L~4×10^(-5)mol/L was 0.9972.展开更多
A PDMS electrophoresis microchip,which integrated with optical fiber for fluorescence detection,was fabricated by using silicon master.A deep reactive ion etches (DRIE) technology was used to fabricate the silicon ma...A PDMS electrophoresis microchip,which integrated with optical fiber for fluorescence detection,was fabricated by using silicon master.A deep reactive ion etches (DRIE) technology was used to fabricate the silicon master with positive features.The PDMS replica was fabricated by casting PDMS prepolymer against the silicon master,where an optical fiber was first fixed on the end of separation microchannel.To improve the rigid characteristics of integrated PDMS microchip,the chips were subsequently assembled by reversible sealing against glass plate.A blue light emitting diode (LED) was used as excitation light sources for inducing fluorescence detection through coupling LED light into the optical fiber.As an application, integrated PDMS microchip was tested in the capillary electrophoresis separation of DNA markers.The results showed that DNA markers could be effectively separated and detected except for the segments of 271 and 281.展开更多
基金financial support from the National Science Foundation of China under Grant number 20299030,60427001 and 60501020.
文摘The diameter of the excitation beam was decreased greatly by integrating the fiber on the microfluidic chip as light propagation medium.The coupling efficiency of the fiber was improved with optical fiber collimation device coupling beam. The chip was placed in the darkroom to avoid the interference of the external light.The cost of the instrument was decreased with a high brightness blue LED as excitation source;the performance of the system was valuated by the determination of FITC fluorescein with a minimum detectable concentration of 2.2×10^(-8) mol/L,the Signal-to-Noise Ratio (SNR) S/N=5.The correlation coefficient of the detection system within the range of 1.8×10^(-7) mol/L~4×10^(-5)mol/L was 0.9972.
基金This present work was supported by grant from the National Natural Science Foundation of China (N0.60501020, No.60341005 and No.20299030)
文摘A PDMS electrophoresis microchip,which integrated with optical fiber for fluorescence detection,was fabricated by using silicon master.A deep reactive ion etches (DRIE) technology was used to fabricate the silicon master with positive features.The PDMS replica was fabricated by casting PDMS prepolymer against the silicon master,where an optical fiber was first fixed on the end of separation microchannel.To improve the rigid characteristics of integrated PDMS microchip,the chips were subsequently assembled by reversible sealing against glass plate.A blue light emitting diode (LED) was used as excitation light sources for inducing fluorescence detection through coupling LED light into the optical fiber.As an application, integrated PDMS microchip was tested in the capillary electrophoresis separation of DNA markers.The results showed that DNA markers could be effectively separated and detected except for the segments of 271 and 281.