期刊文献+
共找到2,941篇文章
< 1 2 148 >
每页显示 20 50 100
Configuring single-layer MXene nanosheet onto natural wood fiber via C-Ti-C covalent bonds for high-stability Li-S batteries
1
作者 Yangyang Chen Yu Liao +5 位作者 Ying Wu Lei Li Zhen Zhang Sha Luo Yiqiang Wu Yan Qing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期701-711,I0016,共12页
Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and ... Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries. 展开更多
关键词 Lithium-sulfur batteries S cathodes MXene nanosheets Wood fiber C-Ti-C bonds
下载PDF
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
2
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforced γ-TiAl matrix composites 被引量:5
3
作者 罗贤 李超 +4 位作者 杨延清 许海嫚 李晓宇 刘帅 李鹏涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1317-1325,共9页
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com... C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase. 展开更多
关键词 Mo coating TiAl alloy SiC fiber titanium matrix composite interracial reaction thermal stability
下载PDF
EFFECT OF FIBER FAILURE ON QUASI-STATIC UNLOADING/RELOADING HYSTERESIS LOOPS OF CERAMIC MATRIX COMPOSITES 被引量:1
4
作者 李龙彪 宋迎东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期94-102,共9页
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ... The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data. 展开更多
关键词 ceramic matrix composites hysteresis loops matrix cracking interface debonding fiber failure
下载PDF
The Role of Host-derived Dentinal Matrix Metalloproteinases in Reducing Dentin Bonding of Resin Adhesives 被引量:13
5
作者 Matthias Kern 《International Journal of Oral Science》 SCIE CAS CSCD 2009年第4期163-176,共14页
Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. Afte... Dentin matrix metalloproteinases (MMPs) are a family of host-derived proteolytic enzymes trapped within mineralized dentin matrix, which have the ability to hydrolyze the organic matrix of demineralized dentin. After bonding with resins to dentin there are usually some exposed collagen fibrils at the bottom of the hybrid layer owing to imperfect resin impregnation of the demineralized dentin matrix. Exposed collagen fibrils might be affected by MMPs inducing hydrolytic degradation, which might result in reduced bond strength.Most MMPs are synthesized and released from odontoblasts in the form of proenzymes, requiring activation to degrade extracellular matrix components. Unfortunately, they can be activated by modem self-etch and etch-and-rinse adhe- sives. The aim of this review is to summarize the current knowledge of the role of dentinal host-derived MMPs in dentin matrix degradation. We also discuss various available MMP inhibitors, especially chlorhexidine, and suggest that they could provide a potential pathway for inhibiting collagen degradation in bonding interfaces thereby increasing dentin bonding durability. 展开更多
关键词 bondING matrix metalloproteinases(MMPs) MMP inhibitors CHLORHEXIDINE
下载PDF
On the liquid-phase technology of carbon fiber/aluminum matrix composites 被引量:4
6
作者 Sergei Galyshev Andrew Gomzin +2 位作者 Rida Gallyamova Igor Khodos Fanil Musin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第12期1578-1584,共7页
The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ... The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed. 展开更多
关键词 carbon fiber/aluminum matrix COMPOSITE LIQUID-PHASE fabrication INFILTRATION pressure COMPOSITE POROSITY COMPOSITE wire ULTRASONIC
下载PDF
Processing of nanostructured metallic matrix composites by a modified accumulative roll bonding method with structural and mechanical considerations 被引量:3
7
作者 Amir Hossein Yaghtin Erfan Salahinejad Ali Khosravifard 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期951-956,共6页
Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced i... Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes. 展开更多
关键词 metallic matrix composites particle reinforced composites NANOSTRUCTURES ALUMINUM boron carbide roll bonding tensile properties
下载PDF
Improved wettability and mechanical properties of metal coated carbon fiber-reinforced aluminum matrix composites by squeeze melt infiltration technique 被引量:11
8
作者 Jian-jun SHA Zhao-zhao LÜ +6 位作者 Ru-yi SHA Yu-fei ZU Ji-xiang DAI Yu-qiang XIAN Wei ZHANG Ding CUI Cong-lin YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期317-330,共14页
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ... In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber. 展开更多
关键词 carbon fiber metal matrix composite Cf/Al composite COATING WETTABILITY mechanical properties
下载PDF
Features of microstructure and fracture in the transient liquid phase bonded aluminium-based metal matrix composite joints 被引量:3
9
作者 孙大谦 刘卫红 +2 位作者 吴建红 贾树盛 邱小明 《China Welding》 EI CAS 2002年第1期9-13,共5页
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ... Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond). 展开更多
关键词 aluminium based metal matrix composite transient liquid phase bonding MICROSTRUCTURE FRACTURE
下载PDF
Fiber Traction Printing:A 3D Printing Method of Continuous Fiber Reinforced Metal Matrix Composite 被引量:6
10
作者 Xin Wang Xiaoyong Tian +1 位作者 Qin Lian Dichen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期69-79,共11页
A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle t... A novel metal matrix composite freeform fabrication approach,fiber traction printing(FTP),is demonstrated through controlling the wetting behavior between fibers and the matrix.This process utilizes the fiber bundle to control the cross-sectional shape of the liquid metal,shaping it from circular to rectangular which is more precise.The FTP process could resolve manufacturing difficulties in the complex structure of continuous fiber reinforced metal matrix composites.The printing of the first layer monofilament is discussed in detail,and the effects of the fibrous coating thickness on the mechanical properties and microstructures of the composite are also investigated in this paper.The composite material prepared by the FTP process has a tensile strength of 235.2 MPa,which is close to that of composites fabricated by conventional processes.The complex structures are printed to demonstrate the advantages and innovations of this approach.Moreover,the FTP method is suited to other material systems with good wettability,such as modified carbon fiber,surfactants,and aluminum alloys. 展开更多
关键词 3D printing Metal matrix composite CAPILLARITY Continuous carbon fiber
下载PDF
Bond Behavior between BFRP Bars and Hybrid Fiber Recycled Aggregate Concrete after High Temperature 被引量:3
11
作者 Boheng Zhu Huaxin Liu +3 位作者 Genjin Liu Abasal Hussain Xiaofei Zhang Xuezhi Wang 《Journal of Renewable Materials》 SCIE EI 2021年第3期507-521,共15页
The aim of this study is to improve the bond performance of basalt fiber reinforced polymer(BFRP)bars and recycled aggregate concrete(RAC)after being exposed to high temperatures.The bond behavior(failure modes,bond s... The aim of this study is to improve the bond performance of basalt fiber reinforced polymer(BFRP)bars and recycled aggregate concrete(RAC)after being exposed to high temperatures.The bond behavior(failure modes,bond strength,bond stress-slip curves)between BFRP bars and hybrid fiber recycled aggregate concrete(HFRAC)after being exposed to temperatures ranging from 20℃up to 500℃was studied by using pull-out tests.The effect of high temperatures on mechanical properties of concrete(compressive strength,splitting tensile strength)and tensile strength of BFRP bars was also investigated.The bond strength decreased as the temperature increased and the drop of bond strength between RAC and BFRP bar was larger than that between HFRAC and BFRP bar.As the temperature rises,the key factor affecting the bond strength was gradually transformed from concrete strength to BFRP bar strength.The relationship between bond stress and slip in the dimensionless bond stress-slip ascending section was established,which was in good agreement with the experimental results. 展开更多
关键词 High temperature BFRP bar hybrid fiber recycled aggregate concrete bond performance
下载PDF
Effects of heat treatment on mechanical properties and microstructure of tungsten fiber reinforced grey cast iron matrix composites 被引量:3
12
作者 Niu Libin Xu Yunhua +1 位作者 Peng jianHong Wu Hong 《China Foundry》 SCIE CAS 2009年第4期333-338,共6页
In this study,grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers(Vr=0.95%,1.90%,2.85%,3.80%)were investigated in as-cast and under the heat treatment temperatures of 1,000℃an... In this study,grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers(Vr=0.95%,1.90%,2.85%,3.80%)were investigated in as-cast and under the heat treatment temperatures of 1,000℃and 1,100℃.The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM,micro-hardness tester and three-point bend testing.The results show that with increasing of the volume fraction of tungsten fibers,the composites reinforced by the tungsten fiber have higher flexural strength and modulus than that of cast iron without reinforcement,and the flexural strength increases with the increasing of heat treatment temperatures.Due to diffusion reaction between matrix and reinforcing phases,the process of heat treatment,the number of graphite flakes in the matrix seemingly becomes lower;and some hard carbide particles are formed around the residual tungsten fibers.Not only does the hardness of both matrix and reinforcement change tremendously,but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius. 展开更多
关键词 iron matrix composites tungsten fiber heat treatment three-point bending flexural strengths
下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
13
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 Mixed matrix hollow fiber membranes CO2 permeance Plasticization Gas separation
下载PDF
Transient liquid phase bonding of TiC particulate reinforced magnesium metal matrix composite (TiC_p/AZ91D) 被引量:1
14
作者 谷晓燕 孙大千 刘力 《China Welding》 EI CAS 2007年第1期19-24,共6页
Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times fro... Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint. 展开更多
关键词 magnesium metal matrix composite transient liquid phase bonding INTERLAYER microstructure mechanical properties
下载PDF
Processing and performance of 2D fused-silica fiber reinforced porous Si_3N_4 matrix composites 被引量:1
15
作者 Guifang Han Litong Zhang Laifei Cheng 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期58-61,共4页
Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture ... Two-dimension (2D) fused-silica fiber reinforced porous silicon nitride matrix composites were fabricated using slurry impregnation and cyclic infiltration with colloidal silica sol. The microstructure and fracture surface were characterized by SEM, the mechanical behavior was investigated by three-point bending test, and the dielectric constant was also measured by impedance analysis. The microstructure showed that the fiber and the matrix had a physical bonding, forming a clearance interface. The mechanical behavior suggested that the porous matrix acted as crack deflection, and the fracture surface had a lot of fiber pull-out. However, the interlaminar shear strength was not so good. The dielectric constant of the composites at room temperature was about 2.8-3.1. The relatively low dielectric constant and non-catastrophic failure indicated the potential application in the radome materials field. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 porous matrix composites fused-silica fiber SI3N4 mechanical behavior dielectric constant
下载PDF
Prediction of the Elastic Properties of Short Basalt Fiber Reinforced Al Alloy Metal Matrix Composites 被引量:1
16
作者 Ezhil Vannan Paul Vizhian 《Journal of Minerals and Materials Characterization and Engineering》 2014年第1期61-69,共9页
In this paper, a micro-mechanical model is implemented in software for the prediction of local mechanical properties of discontinuous short fiber reinforced composites. The model, based on the Mori and Tanaka method, ... In this paper, a micro-mechanical model is implemented in software for the prediction of local mechanical properties of discontinuous short fiber reinforced composites. The model, based on the Mori and Tanaka method, shear-lag, computational model, Nielsen-Chen model and Miwa’s model is used to predict the elastic behaviour of basalt short fiber reinforced with Al alloy composites. The Al/basalt Metal Matrix Composites (MMCs) contain basalt short fiber from 2.5% to 10% in steps of 2.5 wt.% and are fabricated using squeeze infiltration technique. The effects of fiber length and orientation on elastic properties of Al/basalt MMCs are investigated. A comparison between the experimental data and the theoretical data based on physical models is made, and the significance of the findings is discussed. The results show that as short basalt fiber content was increased from 2.5% to 10% by wt.%, an improvement in Young’s modulus of 13.26% has been observed. Optical microscopy was used to examine the general microstructure and fiber distribution in the composite produced. Scanning Electron Microscopy (SEM) was performed on the fractured surface to understand the failure mechanisms. 展开更多
关键词 Metal matrix Composites (MMCs) BASALT fiber MICROMECHANICAL Models SCANNING Electron MICROSCOPY (SEM)
下载PDF
Formation process, microstructure and mechanical property of transient liquid phase bonded aluminium-based metal matrix composite joint 被引量:5
17
作者 孙大谦 刘卫红 +1 位作者 贾树盛 邱小明 《中国有色金属学会会刊:英文版》 CSCD 2004年第1期105-110,共6页
The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process... The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al 2Cu and MgAl 2O 4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al 2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al 2Cu brittle phase and promoting homogenization of joint. 展开更多
关键词 金属基复合材料 制备 显微结构 机械性能 钎焊 瞬间液相连接 TLP
下载PDF
Strain measurement of fiber optic sensor surface bonding on host material 被引量:2
18
作者 Shiuh-Chuan HER Chang-Yu TSAI 《中国有色金属学会会刊:英文版》 CSCD 2009年第B09期143-149,共7页
Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly depe... Fiber optic sensor has been widely used as a structural health monitoring device by either embedding into or surface bonding onto the structures. The strain of optic fiber induced by the host material is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the length of bonding. The strains between the fiber optics and host structure are not exact the same. The existence of the protective coating and adhesive layer would affect the strain measured by the surface bonding optic sensor. The analytical expression of the strain in the optic fiber induced by the host material was presented. The results were validated by the finite element method. The theoretical predictions reveal that the strain in the optical fiber is lower than the strain of host material. Parametric study shows that a long bonding length and high modulus of protective coating would increase the percentage of strain transferring into the optical fiber. Experiments were conducted by using Mach-Zehnder interferometer to measure the strain of the surface bonding optic fiber induced by the host structure. Good agreements were observed in comparison with the experimental results and theoretical predictions. 展开更多
关键词 光纤传感器 主机结构 应变测量 粘接材料 表面 结构健康监测 粘结长度 光纤应变
下载PDF
An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites 被引量:1
19
作者 Zhonghao JIANG and Jianshe LIAN(Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China)Shangli DONG and Dezhuang YANG(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期213-221,共9页
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ... The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions 展开更多
关键词 ab Figure An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short fiber Reinforced Metal matrix Composites
下载PDF
Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic 被引量:3
20
作者 Ren Zhenhua Zeng Xiantao +1 位作者 Liu Hanlong Zhou Fengjun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期67-76,共10页
The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally b... The application of fiber reinforced plastic(FRP),including carbon FRP and glass FRP,for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement(EBR) and near-surface mounted(NSM) strengthening techniques.This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods,including externally-bonded and near-surface mounted FRP,to study the strain coordination of the FRP and steel rebar of the RC beam.Since there is relative slipping between the RC beam and the FRP,the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis;that is,the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height(h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of the FRP and steel rebar satisfies the equation:ε FRP =βε steel,and the value of β is equal to 1.1-1.3 according to the test results. 展开更多
关键词 strain coordination quasi-plane-hypothesis external-bonded near-surface mounted fiber reinforced plastic strengthening concrete beam
下载PDF
上一页 1 2 148 下一页 到第
使用帮助 返回顶部