期刊文献+
共找到385篇文章
< 1 2 20 >
每页显示 20 50 100
Material Selection of a Natural Fibre Reinforced Polymer Composites using an Analytical Approach
1
作者 M.Noryani S.M.Sapuan +2 位作者 M.T.Mastura M.Y.M.Zuhri E.S.Zainudin 《Journal of Renewable Materials》 SCIE 2019年第11期1165-1179,共15页
Material selection has become a critical part of design for engineers,due to availability of diverse choice of materials that have similar properties and meet the product design specification.Implementation of statist... Material selection has become a critical part of design for engineers,due to availability of diverse choice of materials that have similar properties and meet the product design specification.Implementation of statistical analysis alone makes it difficult to identify the ideal composition of the final composite.An integrated approach between statistical model and micromechanical model is desired.In this paper,resultant natural fibre and polymer matrix from previous study is used to estimate the mechanical properties such as density,Young’s modulus and tensile strength.Four levels of fibre loading are used to compare the optimum natural fibre reinforced polymer composite(NFRPC).The result from this analytical approach revealed that kenaf/polystyrene(PS)with 40%fibre loading is the ideal composite in automotive component application.It was found that the ideal composite score is 1.156 g/cm^(3),24.2 GPa and 413.4 MPa for density,Young’s modulus and tensile strength,respectively.A suggestion to increase the properties on Young’s modulus are also presented.This work proves that the statistical model is well incorporated with the analytical approach to choose the correct composite to use in automotive application. 展开更多
关键词 Material selection natural fibre reinforced polymer composites rule of mixtures
下载PDF
Applicability of Strain Controlled Cyclic Tests for Short Fibre Reinforced Polymers
2
作者 Andreas Primetzhofer Garbriel Stadler +1 位作者 Gerald Pinter Florian Grün 《Materials Sciences and Applications》 2019年第8期568-583,共16页
To develop parts, made of short glas fibre reinforced (sgfr) polymers for industrial purposes, a comprehensive material knowledge is necessary. Especially the material behaviour under cyclic loads has a great influenc... To develop parts, made of short glas fibre reinforced (sgfr) polymers for industrial purposes, a comprehensive material knowledge is necessary. Especially the material behaviour under cyclic loads has a great influence on the life time of parts. Parts are often used under complex load cases (stress state, temperature, ...), therefore it is indispensable to understand the effect of the main influence factors. High loads within load histories as well as stress concentrations can lead to plastic deformations. To cover this in an early stage of the development process, a closed simulation chain should be established. Therefore, the applicability of common material models (e.g. fatigue criteria according to Ramberg-Osgood) has to be studied first, the models have to be adapted or even new models have to be found for sgfr materials. This work focuses on the applicability of strain controlled cyclic tests for glass fibre reinforced polymers. Hereby the cyclic stress rearrangement in the low cycle regime of the S/N-curve can be described. Therefore, tests were performed on a 50 wt% sgfr partial aromatic polyamide. For the fatigue tests un-notched, injection moulded specimen were used. The tests show a principal applicability of strain controlled LCF-tests for sgfr polymers. 展开更多
关键词 Low CYCLE FATIGUE Life Time Prediction fibre reinforced polymer VISCO-ELASTIC Material Behaviour FATIGUE Design
下载PDF
Thermo-Stamping Process of Glass and Carbon-Fibre Reinforced Polymer Composites
3
作者 Walid Harizi Zoheir Aboura +1 位作者 Mylène Deléglise-Lagardère Valérie Briand 《Materials Sciences and Applications》 2020年第5期319-337,共19页
In this work, manufacturing tools for thermoplastic (TP) composites have been developed. The chosen process involves the stacking alternately of oriented dry fabrics and TP films and does not use semi-products in orde... In this work, manufacturing tools for thermoplastic (TP) composites have been developed. The chosen process involves the stacking alternately of oriented dry fabrics and TP films and does not use semi-products in order to reduce material costs. This study was specifically directed towards optimizing the impregnation of continuous glass and carbon fibres reinforcing two TP amorphous matrices, the polyphenylsulfone (PPSU) and polyetherimide (PEI), to obtain semi-finished products employed for aeronautical structures. The impregnation quality of inter and intra-yarns is analyzed and validated by optical and scanning micrographic observations conducted with an optical and a Scanning Electron Microscopies (SEM), respectively. The study showed that besides the process parameters and porosity distribution in the core of warp yarns, the impregnation quality depends on the surface properties of constituents. Desizing treatment has been carried out to improve the wettability of fibres by the TP matrices. 展开更多
关键词 THERMOPLASTIC Resin Carbon-fibre reinforced polymer (Cfrp) Glass-fibre-reinforced polymer (Gfrp) Porosity Scanning Electron Microscopy (SEM)
下载PDF
Compressive Strength Estimation for the Fiber-Reinforced Polymer (FRP)-Confined Concrete Columns with Different Shapes Using Artificial Neural Networks 被引量:3
4
作者 曹玉贵 李小青 胡隽 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期395-400,共6页
An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural ... An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural networks( ANNs) model to predict the ultimate strength of FRP confined column with different shapes was proposed. The models had seven inputs including the column length,the tensile strength of the FRP in the hoop direction,the total thickness of FRP,the diameter of the concrete specimen,the elastic modulus of FRP,the corner radius and the concrete compressive strength. The compressive strength of the confined concrete was the output data. The results reveal that the proposed models have good prediction and generalization capacity with acceptable errors. 展开更多
关键词 compressive strength concrete column artificial neural networks(ANN) fiber-reinforced polymer(frp)
下载PDF
A Review on Strengthening of Timber Beams Using Fiber Reinforced Polymers 被引量:1
5
作者 Bingyu Jian Ke Cheng +8 位作者 Haitao Li Mahmud Ashraf Xiaoyan Zheng Assima Dauletbek Mahdi Hosseini Rodolfo Lorenzo Ileana Corbi Ottavia Corbi Kun Zhou 《Journal of Renewable Materials》 SCIE EI 2022年第8期2073-2098,共26页
Fiber reinforced polymer(FRP)has been used in the construction industry because of its advantages such as high strength,light weight,corrosion resistance,low density and high elasticity.This paper presents a review of... Fiber reinforced polymer(FRP)has been used in the construction industry because of its advantages such as high strength,light weight,corrosion resistance,low density and high elasticity.This paper presents a review of bonding techniques adopted to strengthen timber beams using FRP to achieve larger spans.Different methods of bonding between FRP and timber beams have been summarized with a focus on the influencing factors and their effects as well as relevant bond-slip models proposed for fundamental understanding.Experimental investigations to evaluate the flexural performance of timber beams strengthened by FRP bars,sheets and wraps have also been critically reviewed to identify key influencing parameters.Limited research available on the shear performance of FRP reinforced timber beams have been analyzed to determine the influencing factors of the shear performance in timber-FRP beams.The paper finally presents an overall summary of the current-state-of-the-art and proposes some future research directions in the field. 展开更多
关键词 Fiber reinforced polymer(frp) timber beams retrofitting engineered timber flexural properties
下载PDF
Experimental Investigation of Natural Fiber Reinforced Polymers 被引量:2
6
作者 Irene S. Fahim Salah M. Elhaggar Hatem Elayat 《Materials Sciences and Applications》 2012年第2期59-66,共8页
The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to pr... The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress. 展开更多
关键词 polymers-Matrix Composites (PMCs) Fiber reinforced PLASTIC (frp) NATURAL Fibers Low Density POLYETHYLENE (LDPE)
下载PDF
Recipe Development and Mechanical Characterization of Carbon Fibre Reinforced Recycled Polypropylene 3D Printing Filament 被引量:1
7
作者 Mwambe Polline James M. Mutua +1 位作者 Thomas Ochuku Mbuya Kyekyere Ernest 《Open Journal of Composite Materials》 2021年第3期47-61,共15页
Recycled polypropylene filaments for fused filament fabrication were investigated with and without 14 wt% short fibre carbon reinforcements. The microstructure and mechanical properties of the filaments and 3D printed... Recycled polypropylene filaments for fused filament fabrication were investigated with and without 14 wt% short fibre carbon reinforcements. The microstructure and mechanical properties of the filaments and 3D printed specimens were characterized using scanning electron microscopy and standard tensile testing. It was observed that recycled polypropylene filaments with 14 wt% short carbon fibre reinforcement contained pores that were dispersed throughout the microstructure of the filament. A two-stage filament extrusion process was observed to improve the spatial distribution of carbon fibre reinforcement but did not reduce the pores. Recycled polypropylene filaments without reinforcement extruded at high screw speeds above 20 rpm contained a centreline cavity but no spatially distributed pores. However, this cavity is eliminated when extrusion is carried out at screw speeds below 20 rpm. For 3D printed specimens, interlayer cavities were observed larger for specimens printed from 14 wt% carbon fibre reinforced recycled polypropylene than those printed from unreinforced filaments. The values of tensile strength for the filaments were 21.82</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 24.22</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, which reduced to 19.72</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 22.70</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, respectively, for 3D printed samples using the filaments. Likewise, the young’s modulus of the filaments was 1208.6</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 1412.7</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, which reduced to 961.5</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa and 1352.3</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">MPa, respectively, for the 3D printed samples. The percentage elongation at failure for the recycled polypropylene filament was 9.83% but reduced to 3.84% for the samples printed with 14 wt% carbon fiber reinforced polypropylene filaments whose elongation to failure was 6.58%. The SEM observations on the fractured tensile test samples showed interlayer gaps between the printed and the adjacent raster layers. These gaps accounted for the reduction in the mechanical properties of the printed parts. 展开更多
关键词 Fused Filament Fabrication Fused Deposition Modeling 3D Printing Carbon fibre reinforced polymers POLYPROPYLENE Plastic Recycling
下载PDF
Nonlinear stability of timber column strengthened with fiber reinforced polymer
8
作者 欧阳煜 杨骁 包若涵 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第7期903-916,共14页
By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a sle... By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a slender timber beam strengthened with the FRP sheet is established under the hypothesis of the large deflection deformation of the beam. Nonlinear governing equations of the second order effect of the beam bending are derived. The nonlinear stability of a simply-supported slender timber column strengthened with the FRP sheet is then investigated. An expression of the critical load of the simply-supported FRP-strengthened timber beam is obtained. The existence of postbuckling solution of the timber column is proved theoretically, and an asymptotic analytical solution of the postbuckling state in the vicinity of the critical load is obtained using the perturbation method. Parameters are studied showing that the FRP reinforcement layer has great influence on the critical load of the timber column, and has little influence on the dimensionless postbuckling state. 展开更多
关键词 fiber reinforced polymer (frp timber column reinforcEMENT bi-modulus nonlinear mathematical model postbuckling analysis
下载PDF
Fiber-Reinforced Polymers Based Rebar and Stirrup Reinforcing Concrete Structures
9
作者 Marco Lindner Konrad Vanselow +1 位作者 Sandra Gelbrich Lothar Kroll 《材料科学与工程(中英文A版)》 2018年第2期47-54,共8页
关键词 聚合物基 增强纤维 体结构 纤维塑料 应用程序 纤维增强 测试验证 交通线路
下载PDF
Flexure-Compression Testing of Bridge Timber Piles Retrofitted with Fiber Reinforced Polymers
10
作者 Pablo Caiza Moochul Shin Bassem Andrawes 《Open Journal of Civil Engineering》 2012年第3期115-124,共10页
The adequacy of using Fiber Reinforced Polymer (FRP) retrofit technique to restore the flexure-compression behavior of deteriorated bridge timber piles is examined experimentally in this paper. Sixteen specimens are t... The adequacy of using Fiber Reinforced Polymer (FRP) retrofit technique to restore the flexure-compression behavior of deteriorated bridge timber piles is examined experimentally in this paper. Sixteen specimens are tested monotonically under eccentric compressive loading. The specimens are first tested in their unretrofitted condition to determine their elastic properties. Each specimen is then cut and connected (posted) using the proposed FRP retrofit technique, and retested. The results show that the retrofitted specimens are capable of reaching same or higher strengths than that of the unretrofitted specimens with minimal reduction in their stiffness. Based on the experimental results, a design equation is presented to compute the volumetric ratio of FRP needed for retrofitting bridge timber piles under eccentric load. 展开更多
关键词 BRIDGES Timber PILES ECCENTRIC LOADING Fiber-reinforced polymer (frp)
下载PDF
Seismic strengthening of reinforced concrete columns damaged by rebar corrosion using combined CFRP and steel jacket 被引量:2
11
作者 李金波 贡金鑫 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期506-512,共7页
In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve... In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed. 展开更多
关键词 reinforced concrete column seismic performance CORROSION retrofitting steel jacket fiber-reinforced polymer (frp DUCTILITY
下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
12
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (frp) artificial neural networks (ANNs) Levenberg-Marquardt algorithm imperialist competitive algorithm (ICA)
下载PDF
Punching and Local Damages of Fiber and FRP Reinforced Concrete under Low-Velocity Impact Load
13
作者 Kyung-Hwan Min 《Open Journal of Civil Engineering》 2018年第1期64-81,共18页
In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it i... In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it is difficult to obtain the required properties of the FRCC by simply adding fiber to the concrete matrix. Many researchers are paying attention to fiber reinforced polymers (FRP) for the reinforcement of construction structures because of their significant advantages over high strain rates. However, the actual FRP products are skill-dependent, and the quality may not be uniform. Therefore, in this study, two-way punching tests were carried out to evaluate the performances of FRP strengthened and steel and polyvinyl alcohol (PVA) fiber reinforced concrete specimens for impact and static loads. The FRP reinforced normal concrete (NC), steel fiber reinforced concrete (SFRC), and PVA FRCC specimens showed twice the amount of enhanced dissipated energy (total energy) under impact loadings than the non-retrofitted specimens. In the low-velocity impact test of the two-way NC specimens strengthened by FRPs, the total dissipated energy increased by 4 to 5 times greater than the plain NC series. For the two-way specimens, the total energy increased by 217% between the non-retrofitted SFRC and NC specimens. The total dissipated energy of the CFRP retrofitted SFRC was twice greater than that of the plain SFRC series. The PVA FRCC specimens showed 4 times greater dissipated energy than for the energy of the plain NC specimens. For the penetration of two-way specimens with fibers, the Hughes formula considering the tensile strength of concrete was a better predictor than other empirical formulae. 展开更多
关键词 FIBER reinforced Concrete Steel FIBER Polyvinyl ALCOHOL (PVA) FIBER FIBER reinforced polymer (frp) Low-Velocity Impact Load PUNCHING Penetration Depth
下载PDF
Different Methods on Predicting Deflections on Beams Reinforced with CFRP Bars
14
作者 Drilona Disha Hektor Cullufi 《Journal of Civil Engineering and Architecture》 2021年第4期193-197,共5页
The use of fiber reinforced polymer(FRP)bars to substitute the steel bars in internal reinforcement is now an alternative in some structures subjected by corrosion.The strength,stiffness and bond characteristics of FR... The use of fiber reinforced polymer(FRP)bars to substitute the steel bars in internal reinforcement is now an alternative in some structures subjected by corrosion.The strength,stiffness and bond characteristics of FRP bars are tested to understand their flexural behaviour.In this study is investigated the way of failure of beams reinforced internally with carbon FRP(CFRP)bars and their mechanical properties.Two sets of concrete beams reinforced with different diameters of CFRP bars are designed and tested under four-point loading methods.In general,beams reinforced with FRP bars show more deflections and greater values of crack width than beams reinforced with conventional steel,which is due to their low modulus of elasticity and general stiffness.In this paper is presented the calculation and comparison of deflection using different methods,such as ACI 440,CAN/CSA,Eurocode and experimental loading tests.The evaluation is done comparing the results of every method.This study is effective when we use beams with one layer of reinforcement. 展开更多
关键词 fibre reinforced with polymers Cfrp bars DEFLECTION modulus of elasticity
下载PDF
FRP筋混凝土短梁抗剪性能试验研究及承载力计算
15
作者 宋博 金浏 杜修力 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期1080-1088,共9页
为分析梁高、剪跨比、腹筋率等参数对纤维增强聚合物(FRP)筋混凝土短梁抗剪承载力的定量影响,并验证前期基于拉杆拱模型提出的抗剪承载力计算方法的科学合理性,对11根玄武岩FRP筋混凝土短梁开展了剪切破坏试验,试验梁最大梁高为1.2 m.... 为分析梁高、剪跨比、腹筋率等参数对纤维增强聚合物(FRP)筋混凝土短梁抗剪承载力的定量影响,并验证前期基于拉杆拱模型提出的抗剪承载力计算方法的科学合理性,对11根玄武岩FRP筋混凝土短梁开展了剪切破坏试验,试验梁最大梁高为1.2 m.试验结果表明,梁高、剪跨比、水平腹筋率、竖向腹筋率均对FRP筋混凝土短梁的抗剪承载力有显著影响.当梁高由300 mm增大到1200 mm,试验梁的无量纲极限抗剪强度下降46.7%.当水平腹筋率由0增大至1.0%,试验梁的无量纲极限抗剪强度提高40.5%.基于拉杆拱模型提出的抗剪承载力计算式可以合理反映梁高、剪跨比、水平腹筋率等因素的影响规律,计算结果与本试验结果及搜集试验数据均吻合良好. 展开更多
关键词 混凝土短梁 纤维增强聚合物(frp)筋 抗剪承载力 计算方法 拉杆拱模型
下载PDF
B/CFRP筋海水海砂活性粉末混凝土梁抗弯性能研究
16
作者 周芬 李丽娟 +1 位作者 彭飞 朱德举 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期145-154,共10页
为研究B/CFRP-SSRPC结构的抗弯性能,以配筋率及梁截面高度为研究因素,对5根B/CFRP-SSRPC梁开展四点弯曲试验研究,探究研究因素对B/CFRP-SSRPC梁极限承载力、跨中挠度及破坏模式等的影响规律.试验结果表明:增大配筋率仅对试验梁开裂后抗... 为研究B/CFRP-SSRPC结构的抗弯性能,以配筋率及梁截面高度为研究因素,对5根B/CFRP-SSRPC梁开展四点弯曲试验研究,探究研究因素对B/CFRP-SSRPC梁极限承载力、跨中挠度及破坏模式等的影响规律.试验结果表明:增大配筋率仅对试验梁开裂后抗弯性能有明显提升,增大梁截面高度对试验梁开裂前及开裂后抗弯性能均有提升,且对试验梁开裂前抗弯性能的提升更明显;所有试验梁均为脆性破坏,破坏模式与配筋率密切相关;现行中国、美国两国FRP筋普通混凝土结构设计规范均低估了B/CFRP-SSRPC梁的抗弯承载力及抗剪承载力,计算误差分别受试验梁的破坏模式及剪跨比影响. 展开更多
关键词 海水海砂混凝土 frp 四点弯曲试验
下载PDF
FRP布材增强钢筋混凝土桩水平承载性能研究
17
作者 张建伟 樊亚龙 +2 位作者 娄蒙凡 边汉亮 丁乐 《建筑结构》 北大核心 2024年第4期80-85,148,共7页
纤维增强复合材料(FRP)由于其轻质高强的优点被广泛应用于抗震加固、结构补强等实际工程中,但有关FRP增强混凝土桩水平承载性能的研究较少。为了研究不同FRP布材加固混凝土桩承载特性问题,通过室内模型试验对FRP布桩(普通钢筋混凝土桩... 纤维增强复合材料(FRP)由于其轻质高强的优点被广泛应用于抗震加固、结构补强等实际工程中,但有关FRP增强混凝土桩水平承载性能的研究较少。为了研究不同FRP布材加固混凝土桩承载特性问题,通过室内模型试验对FRP布桩(普通钢筋混凝土桩身包裹FRP布材)的水平承载规律进行研究,探究了不同包裹层数、不同FRP布材类型、不同布材混合包裹对钢筋混凝土桩承载性能的影响。同时利用ABAQUS软件建立FRP布桩三维有限元模型,对每种工况进行数值模拟。结果表明,FRP布桩的水平承载性能随着包裹层数的增加而提升,提升效果与包裹层数之间并不存在正比例关系;不同布材类型的FRP布桩中,CFRP布对FRP布桩的水平承载性能提升效果最优;混合包裹(CFRP+GFRP)的提升效果要略优于包裹2层GFRP布。 展开更多
关键词 纤维增强复合材料 约束混凝土 frp布桩 水平承载特性 数值分析
下载PDF
Nonlinear behavior of concrete beams with hybrid FRP and stainless steel reinforcements 被引量:2
18
作者 方志 龚畅 +1 位作者 杨剑 CAMPBELL T I 《Journal of Central South University》 SCIE EI CAS 2009年第3期495-502,共8页
The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified... The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment--curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unhonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity. 展开更多
关键词 beam fiber reinforced polymer (frp stainless steel PRESTRESS DEFORMABILITY reinforcement
下载PDF
Progressive Crushing of Polymer Matrix Composite Tubular Structures: Review 被引量:3
19
作者 Ali Rabiee Hessam Ghasemnejad 《Open Journal of Composite Materials》 2017年第1期14-48,共35页
The present paper reviews crushing process of fibre-reinforced polymer (FRPs) composites tubular structures. Working with anisotropic material requires consideration of specific parameter definition in order to tailor... The present paper reviews crushing process of fibre-reinforced polymer (FRPs) composites tubular structures. Working with anisotropic material requires consideration of specific parameter definition in order to tailor a well-engineered composite structure. These parameters include geometry design, strain rate sensitivity, material properties, laminate design, interlaminar fracture toughness and off-axis loading conditions which are reviewed in this paper to create a comprehensive data base for researchers, engineers and scientists in the field. Each of these parameters influences the structural integrity and progressive crushing behaviour. In this extensive review each of these parameters is introduced, explained and evaluated. Construction of a well-engineered composite structure and triggering mechanism to strain rate sensitivity and testing conditions followed by failure mechanisms are extensively reviewed. Furthermore, this paper has mainly focused on experimental analysis that has been carried out on different types of FRP composites in the past two decades. 展开更多
关键词 CRASHWORTHINESS fibre-reinforced polymer COMPOSITES (frps) Metal TUBE
下载PDF
Uplift of Symmetrical Anchor Plates by Using Grid-Fixed Reinforced Reinforcement in Cohesionless Soil
20
作者 Hamed Niroumand Khairul Anuar Kassim 《China Ocean Engineering》 SCIE EI CSCD 2014年第1期115-126,共12页
Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were ... Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were used to reinforce the sandy soil over symmetrical anchor plates. In the current research, different factors such as relative density of sand, embedment ratios, and various GFR parameters including size, number of layers, and the proximity of the layer to the symmetrical anchor plate were investigated in a scale model. The failure mechanism and the associated rupture surface were observed and evaluated. GFR, a tied up system made of fiber reinforcement polymer (FRP) strips and end balls, was connected to the geosynthetic material and anchored into the soil. Test results showed that using GFR reinforcement significantly improved the uplift capacity of anchor plates. It was found that the inclusion of one layer of GFR, which rested directly on the top of the anchor plate, was more effective in enhancing the anchor capacity itself than other methods. It was found that by including GFR the uplift response was improved by 29%. Multi layers of GFR proved more effective in enhancing the uplift capacity than a single GFR reinforcement. This is due to the additional anchorage provided by the GFR at each level of reinforcement. In general, the results show that the uplift capacity of symmetrical anchor plates in loose and dense sand can be significantly increased by the inclusion of GFR. It was also observed that the inclusion of GFR reduced the requirement for a large L/D ratio to achieve the required uplift capacity. The laboratory and numerical analysis results are found to be in agreement in terms of breakout factor and failure mechanism pattern. 展开更多
关键词 grid fixed reinforced (GFR) PLAXIS fiber reinforcement polymer (frp uplift response anchor plate
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部